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ABSTRACT

Matching is defined as the methodology of merging micro-data files to
create larger files of data. Matching is often done to extract statistical
information which cannot be obtained from the individual files that are
incomplete. Current federal statistical practice involving multivariate
file-merging techniques is typically not based on a formal statistical
theory. In view of this situation, a survey on matching is given, All known
models for matching are presented under a unified framework, which consists
of three situations involving the same or similar individuals.

The properties of a maximum likelihood strategy to match files of data

‘involving the same individuals are derived via ranks and order-statistics

from bivariate populations. In addition, the properties of this strategy
have been examined with respect to a more reasonable criterion called

epsilon-correct matching. Asymptotic results for such situations, including
. (1) the Poisson approximation for the distribution of the number of correct
- matches, and<{1i) convergence in probability of the average number of

epsilon-corect matches, have been derived. Small-sample properties, like the
monotone behavior of the expected number of matches with respect to the
dependence of parameters of the underlying models, have been proved. N

AN

Two matching strategies due to Kadane (1978) and one strategy due to
Sims (1978) for merging files of data on similar individuals are discussed.
These strategies are evaluated via a Monte-Carlo study of matching models
involving trivariate normal distributions.
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I, INTRODUCTION

One of the most lmportant tools for analyzing economic policies

H

is the micro-analytic model. This technique 1is used frequently in
. publlc declsion-maklng centers. Virtually every Federal Agency uses
micro-analytlic models for the evaluation of policy proposals.

Direct use of sample observations rather than aggregated data

R
T e

is characteristic of the micro-anaiytic approach. For this reason,

the micro-data that is used as input to the model has a significant

o 05
el

bearing oh the validity of the results of the model. Furthermore,

w

when all the input-data come from a slngle sample, the quality of the
model depends on, among others, sampling and data-recording proce-
dures. However, if the data from a single source is insufficient or
partly aggregated, then typlically multiple sources of data are used
to provlde the necessary input to the model. At the same time,
issues such as vallidity and quality of the results of the model
cannot be assessed as easily as when we have a single source of data
as input. In such situations, government statisticlians have been
using a methodology in which multiple sources of data are merged to
form a composite data-file. Effective use of the different pleces of

data in order to produce sensible but more comprehensive files is a

fundamental issue 1n the file-merging methodology.
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Some of the difficultles associated with the merging procedures
and techniques for their resoclutlon have been known for quite some-
time. Initlated by the Federal Subcommittee on Matching Techniques,
there has recently been renewed effort to establish solid theoretical
foundation and empirical justification for the file-merging method-
ology. This research reviews the relevant llterature and then pre-
sents new statistical properties of some known procedures for merging
data-files. We shall now gilve an example of a typical situation in

which merging of two fliles is carried cut.

1.1 A Paradigm

A micro-economic madel in heavy use at the Office of Tax
Analysis (OTA), Department of the Treasury, is the Federal Personal
Income Tax Model. This model 13 used to assess proposed tax law
changes in terms of theilr effects on the distributlon of after-tax
income, the efficiency with which the changes will operate in
achlieving thelr objectives, etc. 7The inputs for this model are two
sources of micro-data, namely the Statistics of Income File (SOI)
and the Current Population Survey (CPS). The SOI file is generated
annually by the Internal Revenue Service (IRS) and it consists of
personal tax return data. The CPS file is produceda monthly by the
Bureau of the Census. As we will explaln in Section 1.2, such
pooling of data from more than one Federal Agency has been severely

restricted in recent yearc by, amnng others. ccnticdentiality issues

stich a3 the privuacy of the i1ndividuals invelved 1r the aforementioned

» -w_%

e pws B BB MR OB EE O

"Ry R R




files of data. For thls reason, complete information, especially
identifiers such as joclal security numbers, 1s typlcally not
released by the IRS and the Census Bureau. The resulting micro-data

files are compromises between complete Census flles and fully aggre-

gated data-sets. Thus, sufficlient detall remains to support micro-

analysis of the population, while partial aggregation protects

g

individual privacy and greatly diminlshes computational burden.

A typical problem in tax-policy evaluation occurs when no single
available data file such as SOI or CPS contains all the information
needed for an analysis. For example, consider the variables

L (X’Y'ZI'ZZ)' where

X = Allowable itemizatlons and capital galns

Y = 0ld Age Survivors Disability Insurance (QASDI)
Z1 = Soclal security number

Z2 = Marlital status

Suppose that we are interested in estimating a simple correlation
Px Y between X and Y or, more generally, the expectation of a known

function g, say, of W; that is the integral

Y = | g(w) dF(w) (1.1.1)

where F(w) 1s the joint distributlon function of the variables in w.

Now, the SOI microdata flle cannot be used in its original form gince

it does not include the OASDI benefits (Y). Census files (CPS) with
OASDI beneflts do not allow a complete analysls of the effect of

including this benefit, since 1t does not contain information on t
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allowable itemizations and capltal galns (X). Thus, instead of
observing X.Y.Zl.z2 Jointly on the same units, we have to get only
the following pair of files:

File 1 (S01): X,2_ ,2

1" 2

and

File 2 (CPS): Y,Zl.Z2
Estimating vy based on the fragmetary data provided by File 1 and
File 2 is an important practical problem that has not yet been solved
satisfactorily. In an attempt to cope with situations such as the
OTA model, Federal Agencles have long been using procedures for
matching or merging the two incomplete files so that one can do the
usual inferenze for y, hoping that the merged-file is a reasonable

substitute for the unobserved data on (X,Y,Zl,zz).

The reporting units in CPS are households. In general, the
units in a file may refer to other types of legal persons, llke
corporations. partnerships and fiduclarles, The term “"individual®
will be used as a generlc label in this thesis to refer to the

reporting units of the micro-data files.

1.2 A Dichotomy of Matching Problems

Roughly speaking, there are two different categorles of matching
problem. The first category consists of problems of exact matching
in which it is desired to identify pairs of records in the two flles
that pertain to the same individual. Accurate informatlon on ident}-

fiers such as social security number, name, address are acsumed to be
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avallable when exact-matching the two flles. It is clear that all we
need to czrry out an exact match of two flles is, among other tools,
an efficlent software to sort the individuals by theilr identifiers.
With the help of such software, we can, within reasonable error, link
a given 1ndivicdual in Fille 1 with an individual in File 2 such that
these two units pussess the same values for the ldentifiers. The
resulting merged file contains data which are more comprehensive than
both File 1 and Flle 2. Also, even after merging, most records will
pertaln to the same individual, the number of erronecus matcnes in
the enlarged flle depending on the particular software used in the
process of merging. It is clear that, if accurate ildentifiers are
avallab’e for the units in the two flles, then nu statistical issues
are involved in the matching methodology and we shall not discuss
this type of problem any more. However, one may refer to, among
oithers, Felleg) and Sunter (1669) and Radner et al. (1980) for work
related 1o the exact-matching methodvology. We shall close our
discussicn of this type of matching problem by notlng some of the
reascns why exact matching of flles is often not possible.

First, over the past several years, there have been significant
changes 1n the laws and regulations pertinent to exact matching of
records for stdtlstical and research purposes. New laws, especially
the Privacy Act of 1974 and the Tax Reform Act of 1976, have imposed
additional restrictions on the matchaing of records belonglng tc more
than one Federal Agency and on the matching of fller oI Federal

Agcencies with those of other organlzations. As a resualt of these
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laws, some Agencles have limited access to thelr records for statis-

.
-

tical purposes tc an even gr=atar extent than seems necessary by

statutor; requlirements.

Second, analyses of microdata often involve data from units that
are not available from a single scurce but are avallable from several
sources. For example, suppose that one is interested in the relation-
ships among two sets of varlables, one set consisting of information
about health care expenses incurred by indlviduals and the other set
consisting of Information about recelipt of various types of welfare
benefits. 3uppose further that no existing data file contains all of
the needed varliables, but that two samples of a target population,
which ccme from two different surveys, together cofitain all these
variables. IF executing a new survey to obtain all the variables
from a single sample 1s not fleasible, thern ons might match the two
samples and use the merged file for statistlcal analyses of variables

which are not present in the same sample. Note that the two sample

surveys may have information on the same indilvicduals whose iden-

tities are elther unknown nr unreliable. However, in the afore-

ment ioned example, il ls more appropriate to assume that the two

[ Y ]

samples contain very few or 1o individuals in common. In case the

two samples are stochastlically independent, we shall describe the

units in the =“wo samples as similar individuals.
Suppose, Lhen, that exact matching 1s not feasible in view of
the aforementioned reasons. Then the tools that ara used in the

exact matching methodology are inadequate for Lhe purpose of merging

ataran SEwres et WS

c‘u‘h".'s
SRR,

o

)¢ gi J)

-y




E G OB SN

cpe v
oy
RNED

i
r

B SX 5 A =3

the two flles of data. In particular, identifiers are practically
useless. However, the probabilistic structure of the populations
that generate the data ln the two files or other statistical
techniques can often be used to comblne the two flles., Such proce-

dures will be called statistical matching strategies.

In the literature on matching flles there 1s no consensus on
rigld definitions of Exact Match and Statistical Match. Indeed, it
1s traditional to distinguish these two types of problem by verify-
ing whether same (exact) or simllar (statlstlcal) individuals are in
the two files. Our classification of matching problems is somewhat
different from the usual practice in the sense that any procedure
for merging files, which may contaln the same or similar individuals,
will be described as a statistlical match if statistical techniques
are involved in the process éf merging. Thls convention is in agree-
ment with that of Woodbury (1983), who describes certain matching
problems involving the same lndividuals in two files as "Statistlcal

Record Matchlng for Files™.

1.3 A General Set-up {for Statlistical Matching

Consider a universe #/ of individuals. Let X. Y. Z denote three
groups of random variables and let us assume that we cannot observe
the vector W = (X,Y,Z) for any unit in Y4/. However, suppose that the
following data are avallable:

(Base) File 1: n1 individuals, each with information on a

functlon g;. say, of W.
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and (Supplementary) Flle 2: n2 individuals, each with informatlon
orn a function, !5. say, of V.
Various matching problems arlise depending on what type of data are in
g; and !5. We dlstingulsh only three different situations:
Case 1: !; = X and !E = Y, we also assume that the two files
contain the same individuals.

Case []: Let EI = (X,2), g; = (Y,2). As in Case I, we further

assume that the two flles contaln the same individuals.

Case IIT: Let Ui = (X,2), U; = (Y,2). Unlike in Cases I and II, we

assume that the two flles contaln similar individuals.

1.4 The Matching Methodology -

Some Important Steps

We shall now mention some steps involved in actually creating a
statistlical match between two given files. First, if the populatlons
represented by the flles differ, a "universe adjustment” is carried
out to ensure that there 1s a common universe 77 from which the indl
viduals of the two flles are sampled. Second, a "unils adjustment”
might be needed if the units of observatlion in the two files differ
(e.g. persons and tax units). Third, "matching or common variables,”™
Z, are defined and it 1s assumed that File 1 with n, records carrles
information on (E,Z). whereas Flle 2 with n2 records consists of data
an (Y,2). The varlables X and Y are often called non-matching
variables. Flnally, in the "merging"” step, if the records (xi.gi).
and (Y

~j‘EJ)' respectively from File 1 and Flle 2, are to be matched,

then one completes the 1th record in File 1 by substituting ¥,6 for
~J

-

-
e

K

8




the missing value. Thus, we get the syntnetlc Fille 1:

J 2 ). i=12, ..., n

Clearly, the same methodology can be used to get a synthetic File 2
by finding substitutes for missing X values of File 2 using X's from
File 1. However, in order to keep our dlscussion simple, we shall
often be concerned with complating only File 1. Although, many
different methods have been used in this final step, several basic
similarities can be identifled. In most matches, certain Z variab.es
are treated as the so-called "cohort” variables. Such variables
establish "packets™ of the records in each of the two Flles, with
matching permitted only between palrs of cases in the same packet.
For example, sex is often a cohort var:able so that a male can be
matched with another male, and a female with another female. This
step about the formatlion of cells or packets is aimed at arffusing
the dissimlilarities between units that are belng matched. Further-
more, depending on how many of the common varlables are used as
cohort variables, there may be very little or no within-packet
varialion with regard to Z. In such situations, File 1 has data on
X and File 2 has data on Y and we would like to merge the files to

~

get Jnlnt nformatlon on X and Y. Note that, !n Section 1.3, such a
scenario was labeled Case I. The selection of "matching records”
within a packet 1s typically based on a "measure of dissimilarity" by

which a "dlstance" is computed between a given File 1 record and each

poLtential match in the supplementary flle. A potential match with

y
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the smallest dlstance 13 chosen as the match that will provide the i
missing Y value to a File 1 record.
1.5 Two Basic Types of Matrhing Strategles I
Suppose that the age of an individual, Zl. say, 1ls a matching l
variable. Then, one may define a distance measure d, say, between
individuals 1 in Flle 1 and J in File 2 by the equation I
dij = IZ11 - ZZJI (1.5.1) !
For fixed } - 1,2, ..., nj, one will then match one possible )" in
File 2 with tth record in File 1 if 3" minimizes diJ over }. That ﬁ
is, J™ depends possibly on )1 and satlsfles the restriction g
d,,, = min d (1.5.2)
13 1<j<n, 1 I

If the cholce of 3J* involved no other restrictlions, then the statis-
tical martching strategy is called "Unconstrained Matching”. dHowever,
there are typically additional restrictions subj)ect to which one must
choose the optimal match j" from File 2. Matching data files with

the restrlctlon that the variance covariance matrix of data items in
each flle be identical to the varlance. covariance matrix of the same
data items in the matched file is an example cf a “Constralned Match."

In1 order to formulete this type of merging mathematlcally,

assume first vor simplicity, that both files carry only n records,

that 1s, the common value of n1 and n2 is n. Let
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aij = 1 if 1th record in File 1 1s matched with the jth
record in Flle 2 l<i, J<nu (1.5.3)
1f the 1th record in File 1 13 not matched with the
3" record in File 2

Then, the following additlonal conditions will ensure that the

aforementioned preservatlion of moments 1s achieved by not letting

more than one record in File 1 to be matched with the same record in

o

File 2:
n
} a =1, for } = 1,2, ..., n (1.9.4)
. 13
i=1
N
: n
' Yy a,, =1, for1 =1,2, ..., n (1.5.9)
-1 M

Now let dlj denote, as in the case of a unconstrained match, a

measure of inter-record dissirllarity given by the extent to which
the attributes in any one record differ from the same attributes in
another record. Then the optimal constralned match minimizes the

"objective functlon®”

n n

Y I d,,  a (1.5.6)
Eg 1-1 3-1 EURS
g% Subject to the restrictlons in (1.5.3) to (1.9.9). C(Clearly, this

extremal problem 1s the standard linear assignment problem in

"Optimization.™
A matching situation more typlical of problems relating to policy

analyses is a constrained merge of two files with variable welghts

[ . i ) oo s s ey g g s e ey s T g Tl U T = 8 o e e e g 2 v 1o g e R

1 —
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in both files and an unequal number of records in the files. Let ay

be the welght of the 1th record in File 1, and let B, be the weight

J

of the Jth record in File 2. If n,, n, are respectively, the number

2

of records In File 1 and File 2, then we minimlze the objective function

in (1.5.6) subject to the following constraints.

2
5 ay oy, =12, ....n (1.5.7)
3-1
™
} a,, =B, 1=1,2, ..., n (1.5.8)
1=1 1\.‘ j 2
nl 02
I a, = ¥ 8 (1.5.9)
i1 Y o3 3
and
a >0, Vi and } (1.5.10)

It is clear that an optimal constrained matching strategy when
the two files have unequal number of individuals 1s the solution of
a standard transportation problem in which the roles of the "ware
huuses™” and "markets” are respectively played by the records in File
1 and File 2 and the "cost of transportation" 1s the inter-record
distance "dijn' Existing algorithms to solve a linear asslgnment or

transportation problem can be used to complete the {inal "merge"

step, glving us the synthetlic sample

- _ L]
Wr o= (X,.99.2,), 1 <1<, (1.5.11)

1 =N

s
E )
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o
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where YT denotes the value of Y assigned to the 1*" record of File 1.

The sample in (1.5.11) may now be used to estimate a parameter like

Yy in (1.1.1).

1.6 Criticlsms of Statistical Matching

’

In Sections 1.4 and 1.5, we described the general form of most
matching techniques that have been used by Federal Agencies.
Matching records at the "packet"™ level means baslcally that the
random vectors X and Y are stochastically independent, given the
value of the common variables Z. In the particular case of a multi-
variate normal distribution for W = (X,¥,2), conditlional independence
assumption is equlvalent to the clalm that the partial correlations
among X and Y variables, controlling on the Z variables, are all
zero. This point was made first by Sims (1972) and repeatedly by
others since then. The conditional independence assumption is a
strong one for which convincing justifications has generally not bcen
offered. It implies that the relatlonships between X and Y can be
totally inferred from X's relation to Z and Y's relationship to 2.
Sims (1978) stated that matching the files under such assumptions 1is
unnecessary. He also sketched an alternative statistical procedure
that uses the data in the two flles to estimate, under conditional

independence, a parameter such as vy in (1.1.1). Sims' alternative

will be discussed further in Section 3.2.

Fellegl (1978) aand many other investigators have expressed great

caution about the use of statlgtical metching because not much 1s
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known about the accuracy of the estimates of the joint distribution
of W produced by synthetic files.

Notwithstanding these criticisms of statistical matching, there

is no viable alternative statistical procedure that will, in general,

A B e Q.

;ﬁg provide better estimates of y than a synthetic file can offer.

i

Glven this lack of good alternatives, especlally when conditional

R
-

independence does not hold, the area of statistical matching is wide
}f open and both theoretical and empirical investigations to discover

e the properties of synthetic data-files are in order.

, 1.7 Reliability of Synthetiec Files

A The precislion of synthetic-file-based estimators of a given

< parameter relevant to the population of W = (X,Y,Z) is affected by
varlous types of errors that occur while matching two files. To

e discuss these matching errors, let us first restrict our attention
to the cases where the same individuals are 1n the two files, namely

ot Case I and Case II.

AT In practlice, it 1s almost lnevitable in most matching projects

that some matching errors occur, even with the most sophlsticated

y procedure and the most careful execution of matching of the files.

e, These errors fail 1ato two major categories:

I (1) Erronecus match (false match) or linking of records that

AN |

o

§?f correspond to different individuals.

O'i‘e

L

}g; (11) Erroneous non-match (false non-match) or failure to link the

records that do correspond to the same individual.
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The reliability of the results of a statistical matching
strategy is often defined (Radner et al., 1980, p. 13) as one of the

following coefflicients:

(a) the proportion of the correct matches, that is, matches of
records -0 the same individuals.
(b) the proportion of erroneous declsions, that is, false matches

and erronecus ncn-matches.,

These reliabllity coefficients are random variables because, in
view of the terminological conventions of Section 1.2, a statlstical
matching strategy ls dependent on the data in the two files. The
sampling distribution of the reliability coefficients, either exact
or asymptotic (as the sizes of the flles grow), are very useful in
Jjudgling the quality of a glven matching procedure.

Now, we will discuss the rellabllity of a synthetlic file 1in
Case III, where the two files contaln very few or no overlapping
individuals. First, note that the definitions of error in the
results of matching, which have been proposed for Case I, are not
applicable to Case III because the linkage of records from the two
files that pertain to the same unlt seldom occurs 1n Case [II. In
other words, almost all linkages 1in Case I[II are false matches in the
sense of the definitions glven earlier in this section. In Case III,
definitions of error and rellabllity which are tractable from a
theoretlical perspective are unavallable at this time. In fact,

little theoretlcdl work on the errors present ln the synthelic files

7,98 LA T * % H f A - — h g b 0 N
4737 18 SN ’ e¥ e (3 s AEVL Prig sr iy
A SRR TR Eint i e et b s s R e




A -~
efeed

16
of Case III has been done. Until now, the evaluation of a gilven
matching strategy in Case III has been done from an empirical point

of view. A case \in point 13 the work of Rodgers (1984),

1.8 Summary

In Section 1.3, thrce important cases for merging two files of
data were distinguished. Of these, Case I and Case II are relevant
when the same individuals are represented in the two files. Case III
arises when only similar individuals are present in the files. This
research is concerned with both theoretlical investigations and
empirical evaluations of the quality of synthetlic flles in Case I and
Case [II. We shall not discues Case II in this thesis.

In Chapter 2, Case I is discussed at some length. A review of
known results for this case 1ls given. New optimaliry properties of
a maximum likelihood matching strategy are established. Some small
sample and large-sample properties of the number of correct matches
with regard to this strategy are derlved, sheddling some light on the
reliability of the synthetic file arising from using the maximum
likelihood strategy.

Case I1I 1s the topic of interest in Section 3. The bulk of the
discussion in this Chapter is confined to matching two flles of data
that are sampled from a trivarlate normal population. Thus, :f
(X.Y.2) ls a three dimensional normal random vector, File 1 has data

on (X,Z), while File 2 has data on (Y,Z). Two strategies Lroposed by

Kadane (1978) and one strategy due to Sims (1978) 2re used to create

A Ancm raren v ] S R e atiin o "] e o B KX A
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synthetic files out of simulated data on (X,Z) and (Y,2). These
synthetic flles are then evaluated by comparing the estimates of the
correlation between X and Y provided by them with the estimates based

on unbroken data on (X,Y,Z).
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7. MERGING FILES OF DATA ON SAME INDIVIDUALS

A useful classificatlon of situatlions involving statistical mat-
ching of data- flles was discussed in Section 1.3. It may be recalled
that 1n the context of the two flles having the same indilviduals, this
class)fication scheme included two cases. Case I is the scenario
where no matching-variables z are present, while case II is the
situatlon where matching-variables are part of the statistical model.

In this chapter, we shall dlscuss results relevant to case I only.

2.1 A General Model

T
Let [y) be a multi-dimensional random vector with C.D.F H(t,u)
- Iy
and P.D.F h(t,u). Let [Ull' 1 =1,2, ..., n be a8 random sample of

size n from H. We shall assume that these sample values pot broken up
into the component vectors T's and U's before the data could be
recorded. Thus we do not know whlch T and U values were palred in the

original sample and the two files consist of the followlng data:

File 1 - x,. x,, C X

which is an unknown permutation of Il' A In' and
-Y , Y., ..., '

File 2 - ¥, ¥, Y

which 13 an unknown permutation of Uy ..., U
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DeGroot, Feder and Goel (1971) call tuls a "Broke. Random Sampla”
model for two files.

Two types of statlistical decision and inference problems arise
from observing a broken random sample. The first type of problem
involves trying to palr the x's with the y's in the broken data in
order to reproduce the pairs in the original unbroken sample. The
second type of problem involves making inferences about the values of
parameters in the joint distribution H(t,u) of T and U.

This chapter will be organized into a review of the literature on
matchlng problems ln Sections 2.3 to 2.5. followed by a discussion of
statistical propertles of some matching strategies in Sections 2.6 to

2.9.

2.2 Notatlons
In thls section, we introduce most of the notatlons that will be
used in the present chapter.

T
(1) (y) will denote a multivariate random vector. It is assumed to

have an absolutely continuous joint cumulative distribution func-

tion (CDF) H(g.g) and joint density hitLu); the context will make
the dimensions of t and u clear. In particular, (6) will denote
a two dimenslonal random vector, with h(t,u) and H(t,u) respec-
tivecly as the density and CDF of (a). hl(-) and hz(-) will
respectively denote the marginal densities of T and U and F(-),
Gi(+) wlll be the respective marginal distribution functions.

The symbol g (+) will be the generic notation for the dersity

1




20

function of the random vector §. Without the suffix, g(-) will
denote a real-valued function.

T
(2) Let (U:)- 1 =1,2, .. h be a random sample from the population .

[ =

T 1 :
of (U). Let Fn(x) = I(Tisx) be the empirical C.D.F

1=1

based on the vartables Tl' Tn. Similarly, Gn(x) will be

the empirlical C.D.F based on U_, uU

oo Use

Let R ‘(HZTQ) be the rank of ‘l'1 among the variables

n
= 1
11 a1

Tl' e, Tn' where 1 = 1,2, ., n. Similarly, R R

21 7Y T 2n

wlll depote the rank order of the variables U_, ..., u - !

i

(3) Let ¢ = (9(1), ..., 9(nj) be a permutation of the integers
1,2, ..., n. ¢ will stand for the set all such permutations. E

Also, let " = (1,2, ..., n).

(4) Let ¢>0. V i

1,2, ..., n, define events Ant (¢p,c) as follows:

Ani(cp.c) = [ 1| < ¢l (2.2.1) s

Let Apyle) = Apjle™,e), 1 = 1,2, ..., n, (2.2.2)

o Anp = Rpyle™ 00 = (R = Ryydy

"
e
N
=

(2.2.3)

. ) - o1,
: Let V. (p,c) = I 1 2

, ., n. (2.2.4)
Am(tp.c)

Vo le) = I, (o™ e 1 =1,2, ..., n (2.2.5)

ni

- e n

ni A , 1 =1, 2, ..., n (2.2.6)

v 5) Let c(x,y) be the generlic notation for a joint density of two

' random variables T and U which are marginally uniform. Then,

= KR B 3 S -

s
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1
Jdeflne the constant \ as | ¢(x,x)dx, which is the density of the
0

random varlatle T-U evaluated at zero. For any fixed integer 4,

def'ine
sn = (Snl' .o Snd)‘ where (2.2.7)
S =R - R J-‘lnzo » N

Note that 1if

E =1 - I v ¥1 <3J<dand 1l <k <n
Jk (TJ~TK30) (UJ—ngo)
(2.2.8)
then we get the representation
n
an = 2 Ejk' J = 102| AL ] d- (2.29)
k=1
Let 8. = (E5» v B! (2.2.10)
Then,
n
= ¥t (2.2.11)
n k-1 k
Let % = I - I _ » 1 <3, k <n
1jk (TJ—Tkgc) (UJ Ukzo)
3 =1,, ~ I B B 1 <}, k<n (2.2.12)
23k \uj-UKZO) (TJ Tkg e}
Let L = T-Uand L, = T, - U,, where = 1,2, ... . Let A, be
U . a
the sigma-fleld o(!l. . !d) generated by the vectors
Ty
v, = (y;?. 1,2, ..., 4. Let ¥,(0) be the generlic notation for

the characteristic function of a random vector n, 6 belng & vec

tor of dummy varlables whose dimension 1s tne same as that of n.
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-] s oeeey variable ) 2
Let Ejk(gl w,) be the rariabl Ejk when W, takes th
value !1. i =12, ..., 4.
' n

L ( S =

et ik (W, . gd) and 8 Y?l gk(gl. . gd) be
respectlvely p, . and S, when ¥, =w. 1 =12 ...,4d

Let Yd = Yd(gl. RN !d) be the negative logarithm of the
moculus of the characteristic function of %4.;. Wy e !d)

2.3 Data-based Matching Strategiles

ralring the observatlons in the two data-files that were des-
cribed in Section 2.1 should be distinguished from the problem of
mat.ching two equivalent decks of n distinct cards, which 15 discussed
in elementary textbooks such as Feller (196B). One version of card-
matching 1s as folows. <Jonsider a "target pack"” of n cards laid out
in a row and a "matchlng pack"” of the same number of cards laid out
randomly one by one beside the target pack. In this random arrange-
ment of cards, n pairs ot cards are formed. A match or coincidence
is sald to have occurred in a pair Af the two cards in the palr are
dentical. Because the two decks ave merged purely by charce and
without using any type of observations or other information about the
A excellent survey of various versions of card-matching schemes 1s
feund in Barton (1958).

Suppose that N Jdenotes the number of pairs ln the aforementlioned
matcehing problem which have like cards or matches. The derivation of

the probability distribution of N dates back to Montmort (1708). The

’\v

e

2




following is a summary of some of the well- known properties of N
(Feller 1968):

Proposition 2.3.1: 1If P[m] is the probability of having exactly m

! 23
matches, then

1, L1 1

= ==11 - = . = b T
- T I L Y B THR R A Ty
and

1
P nt

{n]

-1
(1 Noting that :Tf is the probability that a Poisson raudom

i variable with mean 1 takes the value m, we have the following
S approximation for large n:

P[m] ~ mt

(iii) For a4 = 1,2, ..., n, the dth factorial moment of N, namely

N(Cl)

g( ), is 1.

As one might expect, for certain broken random sample models, it

|

B

E pays to match two flles of data using optimal strategies based on

g such data. Several authors starting with DeGroot, Feder and Goel
{1971) have proposed and studied matohing strategies based on broken

g data. In Section 2.9, it will be shown that, for certaln matching

strategles based on independent variables T and U the distributional

§‘ properties of the number of correct matches are the same as those

@‘ mentioned in Proposition 2.3.1. In other words, as far as statls

- B
tical propertles of N are concerned, matching files of data on inde- -,
pendent random varlables is only as good as no-data matching in which

we randomly asslign units in one file to the units in the other tile.

T & R SRR
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2.4 Repalring a Broken Random Sample
2.4.1 The Easic Matching Problems
Let us conslder matching the broken random sample xl. xz, N
xn. yl. e yn by palring x1 with yw(i). for 1 = 1,2, ..., n where ]
¢ = (9(1), ..., @(n)) is a permutation of 1,2, ..., n. As we scek a g

¢ from ¢ that will nrovide reasonably good palrings of the x°'s with
thie ¥y°'8, we need Lo clarify the fundamental role of ¢ in the statis-
tical model described in Section 2.1. If we treat ¢ as an unknown
parameter of the modei, then the likelihood of the data will include
¢. For instance, If T and U are jointly blvarlate normal with means
Ml Mo variances oi. °§ and correlation coefficient p, then the

log-1ikelihood function of ¢, p His Mo a2

1 02. given the brcken
randuom sample, 1s ‘
L( 2 2!x X )
W.P.vl.u2»01.02 19 LA 1 nl Yl‘ AR ] yﬂ
n 2 n 2 n 2
= log(l - p ) - 2 log 9, 5 log S,
n n
. 2, 2 2
~—ts (Y (x, w)/a + § (y, w,)/c
2(1 p<) L1 i 1 1 1-1 1 2 2
n
- 20p 1);1 (x, ul)tyw“) uy1/0,0,] (2.4.1)

A constant term not involving the parameters has been omlitted in
(2.4.1). In subsection 2.4.2, we shall seek ¢'s that maximize the
likelihood such as this. On the other hand, some statlisticlans

would regard ¢ as some sort of missing data and not as a parameter

LT AT A IR s M s e T O AT 2 WA R R0 S 57 TR S o Vo Vi e o U e Shee e G Ve
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of the underlying model. The problem of pairing the two fllesz will
not arise in such situations. However, one may still want to do
statlstical inference for other parameters of the model based on the
broken random sample. Such issues &re not pursued in this thesls
and one may refer to DeGroot and Goel (1930) for an approach to

estimating the correlatlon coefficlent p whlle treating ¢ as

missing data in the bivarliate normal model.
2.4.2 The Maximum Llkellhood Solution to the Matching Problem
We start with a bivariate model used in DeGroot et al. (1971)

which assumes that the parent probabillity density function of (E) is

hit,u) = af{t) B(u) exply(t) &(u)] (2.4.2)

where a, B, v, & are Known but otherwise arbitrary real valued

functlons of the indicated varlables. Suppose now that xl. ceee X

and yl. e yn are the observatlons in a broken random sample from

a completely specified density of the form (2.4.2). If x, was paired

with yw(i) forr 1 = 1,2, ..., n, in the original unbroken sample, then

the joint density of the oroken sample would be

n n n
] =0 0a(x )00 B(y diexpl ¥ v(x,) &(y )]
121 i 1=1 1 1-1 i (1)

n
N hix

'y
e Ve

(2.4.3)

Thus the maximum lilkelihood estimate of the unknown permutation ¢ 1s
n

the permutation for which §  vy(xy! 8(¥p(1)) 1s maximum. Without
1-1

loss of generality, we shall assume that the xy°'s and yJ‘s have l.een

X

reindexed so that Y(xl) < ... < y(xn) and 6(y1) < ... < 6(yr).
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T
R Since () is assumed Lo have an absolutely continuous distributlion, i
with probablility one, there are no tles among v{(xy)°'s cr u(yj)'s. g

1__, DeGroot et al. (1971) shows that the maximum llkellhood solutlion is
' to palr X, with yi. for 1t =1, ..., n. In other words, the maximum
: likelinhood pairing (M.L.P} is ¢* = (1, ..., n).

Y

: In particular, if the density in 2.4.2 1ls that of a bivarlate
- normal random vector with correlation p, then M.L.P,can be described

knowing only the sign of p. If p > 0, the M.L.P. is to order the

; observed values so that )(1 < L. < xr and yl < ... < yn and then to g
h ) w
. pair x1 with Yy for ' = 1,2, ..., n. If p < 0, the solution
2
sy d ¢ f -1, . = ¢ ﬁ
:;i. 1s to pair xt and y(n+1~—1)' or i V2. , N 1f p 0, alil
(‘t
‘,i_j‘: palrings, or permutations, are equally llkely.
o Chew (1973) derived the maximum likelihood solution to the ﬁ
)
It:—.
W (bivariate) matching problem for a larger class of densitles h(t, u) g
beth
MY
"‘f.‘f with a monotone likelihood ratio. That is, {or any values r.l. t2.
.‘fv ul and u2 such that tl < t2 and u1 < u2. B
v.t;v
|‘l"
y h(t ,u ) h(t ,u ) >» h(t ,u ) h(t , u) (2.4.4)
h:..: 1 1 I'4 2 1 2 2 1
LA
o As before, we shall assume that the values x , ..., x An1
£y 1 n d
& B
;? yl. yn in 2 broken random sample are from a density h(t,u)
%)
it i
:{,n.‘. satlasfyling (2.4.4). Without loss, relabel the x°s and y's so that
o xl oL < xn and yl < L. < yn. Thuen permucat lon ¢ - (1, ..., n)

is again the M.L.P.

T
<)

3
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2.4.3 Some Bayeslan Matching Strategies
DeGroot et al. (1971) studied the matching problem from a
Bayesian point of view as well. They proposed three optimality

criteria, subj)ect to which one may choose the matching strategy ¢.

O R B R

Before we state these criteria, we need some notation and definitions.
Ee Let xl, C ey xn and yl, C ey yn be the values of a broken
randem sample from a given parent distributlon with density h{t,u).

If x1 is palired with yw(i)' 1 =1,2, ..., n, then the likellhood

.

function of the unknown permutation ¢ 1s gilven by the equation

1'u¢(1))' (2.4.9)

Assume that the prior probability of each permutation is i}. Then

the posterior probability that ¢ provides a completely correct set

of n matches is

; ple) = Lie)/ I L) (2.4.6)
) VvED

o For 3 = 1,2, ..., nh, let

! $(1) - [ect: o(1) = 3) (2 4.7)

be the set of (n - 1)! permutations which specify that x; is to be

1 palred with yJ. Using the definitlons 1n (2.4.6) and (2.4.7), we get
A Sé the posterior probability that the palring of x1 and yj ylelds a
B X _

G correct match to be .
,:
K Py = I Ple),l<)c<n (2.4.7) ;
W WP () .
s

73

For any two permutations ¢ and y in ¢, let

T » .. s

. . o .. I T e T N S
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Ko, ) = # {1: (1) = (1)}

That 1s, K(¢,¥) 1s the number of correct matches when the observa
tions in the broken random sample are paired according to ¢ and the
vectors in the original sample were actually palred according to y.

It then follows that for any permutation ¢€¢, the quantity

M(g) = 3 Kie¢,¥) ply) (2.4.9)
yeP

s the posterior expected number of correct matches when ¢ is used
to repalr the data in the broken random sample.
Finally, let ’1 n be the set of all permutations ¢ such that

Yoty S Y1 M Yoy TV

0
DeGroot, Feder and Goel (1971) have proposed three optimality

criteria, subject to whlch one may choose the matchling strategy e:

(1) maximize the probablility, pl¢), of a completely correct set of

n matches,

by

(11) maximize the probabllity, pj, of correctly matching X

choosing an optimal j from {1,2, ..., n} and

(111) maximize the expected number, M(¢), of correct matches in the
repalred sample.
Assuming that the bivarlate density of T and U was glven by
hi{t,u) - a(t)b(u) etu. (t,u) ERE, the following results, among

others, were established by DeGroot et al. (1971):

(a) The M.L.P ¢* maximizes the probability of correct pairing of all

n observatlons.

TRy
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{b) The probability of pairing xl(xn) correctly 1is maximized by

pairing x,(x ) with yl(yn)-

(¢) The class of permutatlons ‘1,n is complete; that is, given any
permutation wQQ]'n. there exists a weél,n which is as good as

¢ Iin the sense that M(y) > M(y).

(d) Sufficient conditions in terms of the data Xio ocen X and Yy
- yn for the M.L.P ¢" to maximize M(¢) were also given.

The results in Chew (1973) and Goel (1975) are extensions of (a)
through to (d) to an arbltrary bivarlate density h(t,u) possessing the
monotone llkelihood ratio. The "completeness" property in (c) implies
that the permutation wE maximizing M(yp) satisfies wg(l) = 1 and
¢E(n) =n, forn =2, 3, * = ¢E. DeGroot et al. (1971) show that rIor

n > 3, ¢E 1s not necessarily equal to the M.L.P ¢" by means of a

counter example.

2.4.4 Matching Problems for Multivariate Normel Distributions

In our review so far, we have discussed optimal matching
strategies only in the case of blvariate data, one variable for each
of the two flles. However, multivariate data are often avallable in

T
both files. Suppose then that we have a model where (g) has a (p+q)

dimensional normal distribution with known variance-covarlance matrix

). Let us write ]} and its inverse in the following partitioned form:

2 29 R 2y,

Yy - and ¥ ! .

{
PN 2, J L Mo My
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where both 212 and le have dimension p x q.

As before, we shall let x ..., X and ¥y+ ---» ¥ denote the
~ ~n 1 n

1°
values in a broken random sample from thls distribution, where each
X is a vector of dimension p x 1 and each !j vector has the dimen-
ston ¢ x 1. The results to be presented here were orlginally des
cribed by DeGroot and Goel (1976).

The likelihood functlion L, as a function of the unknown permu

tation ¢, can be written in the form

Lig) = expl-] x{ @, Yoy (?.4.10)

since the other factors ir the joint density of the sample do not
depend on ¢. If we again assume that the prior prcbablility of each

peamutaticn o 1s %?. then tne posterlor piobability that ¢ provides

« completely correct set of n matches is given by (2.4.6). Thus,
maximizlng p(e) s equivaleit to wazximizing L(y), or equivalently

minimizing

n
- 2.4.11
Qle) = 121 Xi 45 Yo(1) ( )

There is no simple way, in general, to describe the maximum likell.
hood solution.

However, if rank (212) = 1, then rank (912) = 1 and le can be

repr=se~ted in the form & = a'b, where a and b are vectors of

12

dimensions p x 1 and q x 1. If we let Y(ii) =a'x, and 6(11) = b ¥y

for 1 = 1,2, ..., n, the ¢ will be the permutatlion that minimizes

e ——— sy oY MENY 0 EATEN EOM [y | |
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3l

Qle) =

X Yix,) My ) (2.4.12)

[ g =

1

Now, minimizing (2.4.12) 15 achleved by arranglng v(xy}'s from

smallest o largest, arranglng é(y))'s in the reverse order from
the largest to smallest and ther palring the corresponding elements
in the two sequences.

Suppose next that rank ($2..) > 2. Without loss of generality,

12
we shall assume that p < q and let v, = leyj. for J = 1,2, ..., n.
Then, both 51 and !J are p-dimernsional v=~tors, and the maximum llikeli

hood solution ¢" will be the permutation that minimizes

D
Qe) = I x; v
1-1 1 ~e(l)

Let D denot< the n X n matrix ((d1 )) whose elements are d = X'y

J ER I S I
Then minimizing 72.4.14) is equivalent to minimizing

n
) d1 a

Q) =
1 3-1 J

i

[ e =]

-

subject to the constraints

n
y aij =1, for § = 1,2, ..., n,
1:1

n

Y a s 1, for v = i,2, ..., n,
ya o M

alj =0 or 1,

- wm- x B & W EEE
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which 1s a standard asslgnment problem with cost matrix D. Although,
there 13 no simple form for the solution of an arbltrary assignment
problem of this type, efficlient algorithms are avallable for finding
numerical solutlons.

The permutation @E that maximlzes the expected number of
correct matches i3 very difficult to calculate when p and n are
moderately large. No efficient algorithms are known. A Monte Carlo
study was reported by DeGroot and Goel (1976) in which they compare
wg and ¢" for p = 2 and 50 different covariance matrices } with the
sample size n = 3, 4 and 5. In all cases, the proportlon of samples
for which QE and ¢" were ldentical was between 0.92% and 0.995.
Thus, 1t 1s not unreasonable to use ¢" even when the goal 1s to maxl
mize the expected number of correct matches.

DeGroot and Goel (1976) studied two other simple matching
strategies which provide good approximations to the M.L.P ¢" or to
the rule ¢E. Ve shall not discuss them liere. In the recst of this

chapter, we shall diccuss matching problems only in the bilvarlate case.

2.9 Reliablllty of Matching Strategles f'or Rivariate Data

Consider a random sample of slze n, (ai), e (G"). from a
n

bivariate population with density h{r,u). If the pairings in this
sample are lost before the entire data was recorded, we still can
observe the marginal order-statlistics. In fact, if xl. N xn and

yl, Ce ey yn is the broken random sample ccrrespording fLo the

T
uncbserved sample on (y), then clearly the order-statlstics

B B X EE R e

‘r -
P T
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. x(l) < ... < x(n) of the x°'s are exactly the same as the order- stat-
{d istics T(l) < ... < T(n) of the T's. Similarly, the order-statistics
A
o Y < < ... <Y es as U < ... <U, . The
‘ @ (< Y2 (n) 3r€ the same (1) (n)
g repalring of the x's and y's was introduced in Section 2.4. Thus
‘e 5 for each permutation ¢ in &, there is a matching strategy and the
) typical merged flle consists of the pailrs
2l
X
i (y(i) = 1,2, ..., n. (2.5.1)
b g (¢(1))
A
é;;:
K Some optimal matching strategles were discussed in Section 2.4.
g i
' Here, we are concerned with the quality of the file in (2.9.1).
;;j:’ % Ideally, we would like to choose a ¢ for which the file in
xS
»
3% (2.%.1) recovers all the (a) palrs that we did not observe. It is

therefore nhatural to look at the random variable N(¢), the number

of correct matches due to g or, equivalently, the number of

& .
CFINTE 3
(3
- -
-

: unobserved sample points which have been tecovered 1n (2.5.1). It
+
0““’9.:’ should be pointed out that M{y), which was defined in Section 2.4.3,
:":' is diffearent from E[N(y)] because tre former quantity is a posterior
11€¥[ expected value given a particular broken random sample and,
e

In the latter, the expeclatlon 1s taken over all possible samples.

~ i
’- N
) |

Situatlions often urise where 1t is not cruclal that, after the

. Y X two flles are matched, the mat.hed palrs are exactly the same as the
X n
'm""
) palrs of the original data. For example, wheil contingency tables are
. g I
= A !
oy F{:P contemplated for grouped data on continunus varlables T and U, we '
o \
X 1
R

Y. may, ln the absence of the knowledge of the pairings, would like to

W5 W
et reconstruct the palrs but wouid not worry too much as long as the

LRl T R R s 3~ k by - b A B E VRl L EL RLM AR, R, W LA A W D
A - y wallsdme atden il iy A g e sl S - ' el - ki .
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U-value in any matched palr came within a pre-fixed tolerance ¢ {a

non--negative number) of the true U-value that we would get in the

';} ideal match of recovering all the original pairs. This type of
"approximate matching” was first introduced by Yahav (1982) who

' . defined ¢ correct matching as {ollows:

Definition 2.5.1 (Yahav): A pair in the merged fille (2.5.1),

¢ X1y S
¥

e R BB W &I S

tl;: / x
. Y(?))) , say, 1s e-correct if lU(w(i)) - U[i]I < ¢, where ¢ > 0
' wll)/
C e and 0[1] 1s the concomitant of x(i); that is, the true U-value that ¥
Ll N
. XJ

N was palred with X(i)

The number of e-correct matches, N(¢.¢), 1n the merged file

in the original sample.

y}& (2.5.1) is glven by
',‘ﬁ‘
. IR
‘.:".'5: n
2 N(yp,e) = ) I (2.5.2)
Al 1:1 HU(«p(l)) U“]I < ¢}

Note that as ¢ & O, N(y;ec) converges (almost surely) to N(¢;0), which

is a count of the exact (Q-correct) matches. Hence N(¢), the number
of correct matches due to ¢ can be obtained from N(¢;c) by formally

] letting ¢ = 0.

-
»
-

'%2* In the light of the definition of reliability of a merged file,

' given in Section 1.7, the counts N{yp) and N(¢,c) are useful indices

.
T,
o
Lol
[y |

'Eqi whose statistical properties reflect the reliability of the merged

L

.‘r‘\\ ok

ﬁﬁ? file resulting from ¢. We shall study 'hese performance character E§

istics In the following sectlions.

. ‘Q‘; .!_ .
et o<
- ‘. ‘b 'J_":
‘0... b%s
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2.6 An Optimality Property of the Mayimum

Likelihood Pailring "

The known results about the optimality of the maximum likelilhood
pairing ¢* = (1, ..., n) with respect to some Bayeslan criteria
were reviewed in Section 2.4. Here, we shall propose a new criterion
and establlish that ¢" is optimal with respect to that criterion.

Consider the random variable N(y), the number of correct
matches which result when a permutation ¢ in ¢ 1s used to merge
the broken random sample from a bivarlate populaticon. 1In this
secllion, we shall show that ¢* maximizes E(N(¢)), the expcrted
number of correct matches, provided that the parent density h(t,u)
exhibits certaln dependence structures.

We begln with quoting a very useful result on the exchange

ability of random variables from Randles and VWolfe (1979).

Lemma 2.6.1: If § 2 n and K(+) is a measurable function {possibly
vector valued) defined on the common support of these random vectors,

then

K(E) 9 K(n)

We now establish a representation for N(¢,c¢) as a sum of
exchanpeable Bernoulli random variables, which will be useful for
evxtending results of Yahav (19R2).

Theorem 2.6.1:  Let N{g,c) and an('p.l_) Leas delined by (2.5 2) and

(/.2.4) respectively. Then

L E B m B S . SadEEE 1R R B
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n
Ve In &, Nlp,e) = ¥ V (@,c), (2.6.1)
11 ni
where the suinmands are exchangeable random variables,
Proof: The order statistic U and the concomitant U £ T .
rool (@(1)) () © (1)

used tn (2.9.2) can be written in terms of ranks of T's and U's as

follows:
n
. 2 Ut - (2.6.2)
(1)) ol @ (RZa = el1))
n
Uiy ® LU TR Ly (2.6.3)
a=1 la

Note that N{¢,c) is simply a count of how many pairs in the merged

file due Lo ¢, namely,

T
(1) 1,2, .. ., n (2.6.4)
Ulp(1))
satisfy
lu | < ¢ (2.6.9)

. - U
(@{1)) (i}
If (2.6.5) holds for some i, then 3 a J such that

fu | < «

. - U,
(@(1)) J

In view of the continuity of (Ty,U;), thls correspondence is one to

one. Therefore, the count N(g,c) must be the same as the count given

by

By WD &8 S

wE

R x .
ENc )

ala
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e |

ooy oo
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N(g,c) = (2.6.6)

[ g

Lo ~u <o)

i=1

(¢(R11))

Hence, (2.6.1) holds by virtue of the definition (2.2.4) of V.

Towards showing the exchangeability of the Vni's. note that the
original sample in (2.6.5) are independent and identically
distributed vectors. Hence, usiug the equal In distribution

notation, we get

d
(!ql‘ RN !an) < (!1. RN !n) (2.6.7)
where (al. ey an) is an arbitrary permutation of (1,2, ..., n).
Define a function f = (fl. P fn) from R2n to R" by the equations
) n n n
1if § 1 <l I I ) < ¥ I
\ W5 (byobye) V5 (ay-agz0) AL TN
f‘_
|
0 if otherwlse
=12, ..., n, (2.6.8)
where ¢ 15 the matchling strategy we started with and (al'bl' RN
an,bn) is an arbitrary polnt in Rzn.
It follows from (2.6.7) and Lemma 2.6.1 that
» a 3
E(!al' . “1n) < 2(!1' Caey !A (¢.58.9)
Fix j as an integer in {1,2, ..., n}. Then, using (?.6 3) we see
that £ (W ., ..., W ) is the inalcator function of the event
) ~al ~an
n n n
PR . < () T ) <« )1
L1 (UQ) U‘)() L1 ('l“.j T120) Lo (U“J Uiz e)




38
or, equlivalently, in terms of the ranks Rll' RN R‘n of the T's and
the empicical C.D.F Gn(-: of the U°'s,

Gn(Ua S e) € 1-9(R1a }/n < Gn(U“ + c)
J J 3

Observing that Ggl(k/n) = U(k)‘ k = 1,2, ..., n, we find

© -

.3(!01. Cey !u ) 1s 1 iff IU(¢(R 1) UQl | < e. By tne same token,

n ch h]

f (W, ..., W is the indlcator of the event . - u .
J(~1 ~n) e indlcato f e ’U(m(le)) J| < e
So that fj(gl. e !n) = an(v.c). From these facts and (2.6.9) it

follows that

(VnQ (p.€), ..., Vno (9,e))
1 n
qd
4 (vnl(w.c). e vnn(m,c)) {2.6.10)
Because (ay, ..., ap) 18 an arbitrary permutation of 1,2, ..., n,

we concluce from (2.6.10) that thie sumiands in (2.6.6) are exchange
able random variables.

Corollary 2.6.1: The number of correct matches resulting from the

matching strategy ¢ has the representation

n
N(e) = 3 1 {(2.6.11)

1ol (R21=¢(R11))

Proof: Set ¢ = 0 in Theorem 2.6.1. a
We will need the following speclal dependence structures for
the population density h(t,u). (see Shaked 1979).

Definition (2.6.1): Exchangeable random variables T,U urc said to

B a3 e

e |

1
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be positive dependent by mixture (PDM) iff the joint distribution of
T,U is that of g(go.il) and g(go.Ez). where El and 52 are 1.1.d
random variables, 50 1s a random vector which 1s independent of El

and E> and g is a Borel measurable function.

Definition (2.6.2): Exchangeable random variables T,U are said to

be positive dependent by expansion (PDE) iff the jolnt distribution

of T and U admits the following series expansion:

dH(t,u) = [1 + % ai"t(t)"i(U)] dF(t)dF(u) (2.6.12)

where F(+) is the marginal CDF of T or U, a,'s are nonnegative real

i

numbers, and {"1] is a set of functlons satisfying

] n, (x) dF(x) =0, 1 =1,2, ..., (2.6.13)

According to the Definitions 2.6.1 and 2.6.2, the dependence
concepts will apply only to pairs of exchangeable random variables.
It may also be noted that for most of the known expansions of PDE
distributions, the set of functions [nk(-)} satisfles, in addition to

(2.6.13), the orthogonallity conditions

@O
| n (X)ng (x) dF(x) =8 o, (2.6.14)
@<
where k, * - 1,2, ..., and 449 1s ihe kronecker delta.

We now glve two examples to lllustrate these concepts of

dependence.
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Example 2.6.1: Let Eg, %3, Ep> be 1.1.d standard normal random

varlables. Let g be any constant in the interval {(0,1]. Define new

random varlables

T - vl p - £, s £y

U= vI-p » 52 + vp L

Then, it is easy to verify that T,U are jointly normal and that the
definition (2.6.1) can be applied to T and U with the above choice

of EO' £. and E?' Hence, the standard bivariate normal distribution

1
with nonnegative correlation has the PDM property.
Also, Mardla (1970, p. 48) glves the following series expansion

for the blvariate normal density

]

h{t,u) = [1 + 7§ pknk(t)n
k=1

K (u)] f(t) f(u), (2.6.19)

where f(t) is the density of the unlvariate standard normal random
variable and {nk(-)} is a set of orthonormal Hermite polynonomials.
Thus, if p > 0, blvariate normal distributions possess the PDE
property as well.

Example 2.6.2: A class of bivariate densities due to Farlie. Gumbel

Morgenstern is glven by the formula

i

h(t,u) 1 ¢+ a(l 2t)(1 - 2u), where 0 < t, u <1
“1l < a <1 {(2.6.16)
It 1s easy to check that T and U are PDE for a > 0 in (2.6.10).

Note that the expanslion 2.6.16 has only a finite number of terms.

unlike the expansion for the bivariate normal distribution.
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l We now prove that the PDM/PDE structures are innerited by a palr
of new variables obtained from a given sample by compulting the same

functicn of the marginals. These results are generalizations of

theorems in Shaked (1979), which were proved only for n-¢. However,

mathematical induction does not help to show the results for an
arbilrary n.
Ty
Theorem 2.6.2: Let (Ui)' 1 =1,2, ..., n be a rardom sample from a
PDM parent with density h{(t,u). Tien, for any measurable function
{

g:Rn »+ R, the random variables g(T],T?, C e, Tn) and

g(UI.Uz. RPN Un) are jointly PDM.

Ty
Proof: By hypothesis, the vectors (Ul) are i.i.d, Furthermore, since

PDM property 1s defined only for exchangeable pairs of random

variables, we have

B B = 28 2%

(t..u) 9 (. .TH), 1 - 1,2, ....n (v & 17)
1 i i 1

BsS

Equatlon (2.6.17) together with the independence of T,U pairs yields

SR

da ) u ., T
gg (Tl' ceey Tn, Ul' C ey Un) = (Ul' U2, e U Tl' . , n)
(2.6.18)
. . 2n n .

aa Consider the function K:R » R defined by the equation
b
- [{(ar TR bl' bn) - (g(al. an). }.’,(Dl. N bn))
o n

wheite (ul, e, an. bl' o, hn) is any point in R . Applying the

L

tanction K to both sides of (2.6 18) and invokling Lemma 2.6.1 we get

AKRA A AR AR, 80 A A % L2 L AL . L L P IR LT L
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d
(g(Tl. cees T, g(Ul. e Un)) d (g(Ul, R Un). g(Tl, e Tn))
(2.6.19)
Hence, (g(T), g(U)) is an exchangeable-pair of random variables.

The PDM property of (Tl' Ul)' 1 = 1,2, .... n further implies
that there exlist n 1.1.4. vectors (501'£11'521)' i =1,2, ..., nand
a measurable function f such that
(L For each j, 513,223 are 1.1.d unlvariate random variables

and the vector 503 is independent of Elj and 523.
(11) For each },
T, = f( , ) and U = f¢( R ) 2.6.20)
3 = Ty ke %23 %0 ‘
Introducing the random variables,
- — - -

Bl =R 8 7 Ry
anad

56 = (512, RN Eln‘ 222, Ce e EZn' Eol’ R EOn) (2.6.21)

We find that EI and §5 are 1.1.d univariate random variables and EA
is independent of §{ and EE in view of the assumptions (i) and (i1).

Note that (2.6.20) and (2.6 21) imply that

g2(T) - g(f(E11,§01). SN f(Eln.EOn))

1s a measurable function g%, say, of Ei and 56. Similarly, g(U) 1is
also the same functlion g™ of the random varlables E; and ga. Hence,

by definition, g{T) and g(U) are PDM, 8!

Be 242 Puge P —L‘ 2 fﬁs-_«,f:g'.lfua’f,x' YN .hgsh‘s-&,jxf.‘.}*ﬂ“ YL Ny
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The next theorem 1s similar to Theorem 2.6.2 except the parent

distribution has the PDE property.

T
Theorem 2.6.3: Let (Ui). i =1, ..., n be a random sample from a PDE
parent. Then, for any measurable function g:Rn + R, the random

variables g(Tl, C e Tn) and g(U . Un) are PDE.

1'
Proof: The exchangeabllity of the joint distribution of g(T) and

g(U) has already been proved in Theorem 2.6.2 (see equation ?2.6.19).

& It remains to be shown that, when the joint density of each of the n
2

coples of T,U admits an expansion of the type 2.6.12, the joint

-
>

‘ density of g(T) and g(U) also admits a similar expansion.

Pt

Assume therefore that there exists nonnegatlve constants {ak]
and a set of orthonormal functlons {nk(-)} such that the joint density

of T1 and U1 is of the form.

. -
L -

PN AR
S

w

= - .?2
) dF(tl)dF‘(ul)(1+ 3 aknk(t.l)nk(ui)]. (2.6 )

dH(ti.u
k-1

1

A

where { - 1,2, ..., n.

7

For any real x, define the measurable set in R"

-
-

A(x) = [(xl. coen XD RO, Ly X ) g x)

»
Tl
N

- S
- T

Then, the distribution function Q, say, of (g(Z),g(g)) is

. i

"‘ n

o, Q(x,y) = ... I ... n dH(tj,u]) (2.6.23)
:: g teA(X)  UuEA(y) J-=1 5o

N )

"

.:! g Naipng the expansions In equation (2.6.22) we get

.

AR

ot :..'_"

;.';%-. &;{;:sé:«;:«{ - -aagnazfmﬁ,i‘! sintyach J i ’kﬁh&kk". ’Lﬁ‘gl.g.!&ei ‘ .5 -' " ‘- X
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Qx,y) = Q(x)Qly) +
o (1) (1
noIoan (ax, Yy) .
k=1
i s v 2)
Gy T3 aagxity oxlfly
k=1 %=1 : ’
- -,
o n
e + ) I a a, \: : " (x)xl((n) (y)
LA k,=1 K =1 1 n 1’ 'n 1’ 'n
ot 1 n
iy
(2.6.24)
_ n
where Qx) - [ ... ] u dF (t,)
A{x) 1=1
(1) n
Xy (x) =] ... | nk(tl) n dF(ti)
A(x) i=1 ’
(2) n
X, o (x) = ] ... [ o (t)ng () 11 aF(t,)
K, L ALK S S T Vel 1
and
(n) n n
L " (x) = | . jon " (t,) 0 aF(r)
1’ ''n A(x) 1=1 i ES |
(2.6.25)
Note that Vv k1 = 1,2 and vV 1 = 1,2, ., n the signed measure
induced by x;“ K (x) 1is absolutely continuous with respect to Q
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so that there exlists w;t) K (x) - the Radon-Nikodym derivative -
1’ M )
of x(!)(x) with respect to Q such that
N -~
'l = | W (e . (2.5.26)
10Ky - 1""'9,
Hence, from equations (2.6.24) to (2.6.26) we get
O 5 (1) (1)
dQ(x,y) = dQ{(x)dAQ(y)[1 + n § a b Ow T (y)
k=1
n, v w (2) (2)
+ () Z ) v (x)¢ (y)
2 k k k .k k k
=1 k. =1 2 1
1 2
.
- o
(n) (n)
+ 3 ... Y &, ... a, ¥ (x)y {y)
K <1 Kk =1 kl Kn kl""'kn k ...,kn
1 n
(2.6.27)

Represzentation (2.6.27) holds almost everywhere (Q measure) because
Radon Nikodym derivatives are defined up to sets of measure zero.
Also, the coefficients in (2.6.27), being products of the nonnegative
ak's. are themselves nonnegative. Hence, to complete the proof we
only have to show that the orthogonality conditions (2.6.13) hold for
Lthe wk’s of the expanslon in (2.6.27)

ftor . =1,2, ..., n, and 1 < kl' o, k, <@

we have

ot ———

e —— e w R
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(L) o
(t)k da(ty

) (1)
= Limox Cx)

X*+@ 1

n
—
—

o
=3

w121 A 1

[+ -] - -]

(] e (tl)dF(tl)][ j ... i

—m 1 —m -

n

%
M n (t) 0 dF(t,)]
2 % Yy 1

By hypothesis {nk(°)] are a set of orthonormal functious on the
marglnal distributlon F(+} of T so that
<
Jon (t)) dF(t)) =0 (2.6.28)
. . )

Ky

(

e +]
Hence, 1ot (v) dd(ey =0 (2.6.29)
—Qo

where & = 1,2, ... Jd
and this completes the proof.

The following facts about bivariate ranks are easy consequences
of Theorems 2.6.2 and 2.6.3.

Ty
Corollary 2.6.1: Let (Ul) be a random sample from a PDM (PDE)
parent. Consider the marginal ranks
n

R,, = L

11 Lot sty
a i—a

1
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AT
n
R,, = % I
A
2% a=1 (UIZU&)
Ryy
of T1 and U1 respectively, where 1 = 1,2, .. , n. The palr (R ) is
21
PDM (PDE), 1 = 1,2, ..., n.
Proof: Fix 1 and define a functlon g: Rn + R by the ..quation
n
g.(a,, ..., a )= 73 I
1°1 n -1 (aizaq)
and observe that
Hll = gl(Tl' ceas Tn), R21 = gl(Ul, Ceey Un)
By invoking Theorems 2.6.2 and 2.6.3, the result follows. J

We need one more result before we establish an optimality property

of ™.
Ty
Theorem 2.6.4: Let random vectors (Ui)' { =1,2, ..., n, be PDM/PDE

and denote the ranks of 'll.U1 among 'r1 s and UJ s by Rll'R?l respec-

tively. Consider the joint probability mass function

= }F = = <
“ij F(R11 i, R21 3}, 1 <1, 3 ¢<n
of R11 and R21' Then, wij's satisfy the following inequali?les:
Y D R A
Y 1., LI WJJ > 2«ij (2.6.7C?

Proof: By hypothesis, the parent distributlon 1s POM or PDE. Accor

ding o Coroliary ”.6.1, “11 and 521 are 2'so PDM or PDE. Conse

quenrly, R and R2 are exchangeable randow variables. Hence,

11 1
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L = %

13 31" for 1 <1, j<n (2.6.131)

To establish (2.6.30), first consider the case when T and U are PDM.

By Theorem 2.6.2, and R are PDM. Hence, there exists a

R11 21
distribution function Q(-+) say, such that

@

- = 11.(t) ",

13 (t) dQ(t), 1 <1, J < n (2.6.32)

J

—

where wj.(t) and w.y(t) are the conditlonal mass functlions of Ry,
and R21. given a value t from the Q-distribution.

[t follows from equation (2.6.32) that

w + n - 2w

1 3 1)

e, (1)) aact)

J

T 2 2
_i [Cny C27 4 (o, (1)° - 2w,

(t))2 dQ(v)

- -]
| (= ) - w,

1 J

We thus obtain (2.6.30) when T,U are PDM. Suppose now that T and U

are PDE. Then, by virtue of Corollary 2.6.1, R._ and R would bhe

11 21
PDE . Rll and R21 are ranks that are based on independent random
varlables, hence, R11 and qu are both discrete uniform random variables
on 1,2, ..., n (see Randles and Wolfe (1979), p. 38).

As R and R have finite supports the series expansior of R1

11 21 1

and R21 will have a finite number of termns. In fact, Fisher's




g 0
' jdentity (see Lancaster (1969), p. 90) holds:
. =l-l(1+niian(1)n(3))
g 1y "n n - K"k K
k=1
II 1 <t, J<n (2.6.33)
! where (ag) are nonnegatlive constants and {ny(+)} are orthogonal
% functions on 1,2, ..., n. The representation (2.6.33) leads to the
g following reasoning:
For 1 <1, 3 < n,
1 n-l 2
- + r - 2w = 5 [1 + T a (n (1)) + 1 «
11" "y 13 " 4 oy kM
n-1 2 n-1
Y oa(n () -2-2 F an{t)n(J)]
k=1 < K k=1 X k k
n-1
1 2
= 72 Y ala (1) - n (3)1]
n° k-1 K"k k
> 0 (2.6.34)

Hence, we obtain the lnequalities in (2.6.30). An optimality of

property ™ -can now be established:

T
Theorem 2.6.5: Let (Ui). 1=1,2, ..., n be as in Theorem 2.6.4.
1

Then, V ¢ € ¢,

E(N(gp)} < E(N(e")) (7.6.13%)




9J
Proof: In Corollary 2.6.1, N(y) was written as a sum of exchangeable

indicator random varlanles. Hence, usling equation ?2.6.11, we pet

E(N(¢))

nP(R,, = (R, )) (2.6.36)

n
= n E 'k.@(k) .

where » 1s the joint mass function of Ryj,Rpy. Invoklng the

inequalities on « in (2.6.30) we obtain

1)

n
1
E(N@)) <m0 5 (mp v "ok et )72
k=1
n 1 n
=nl{s ¥ + 2 ¥ o« .
2 ko1 k,k 2 kel p(k),plk)
n
=n jy =
1-1 1
-0 PUR, = Ry
. E(N(e=))
Which establishes the deslilred result. n]

To interpret Theorem 2.6.9, we first recall from subsectlion 2.4.2

that " = (1,2, ..., n) 1s M.L.P if the parent density has the

2 EE &X
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monotone likelihood ratlo (MLR) property. As demonstrated by Shaked
(1979), there is no general relationship between POM/PDE concepts of
positive dependence and the MLR property. We can therefore state the
optimality of ¢" in Theorem 2.6.5 as below:

Let T,U have a jolnt density that has MLR property. In addition,
12t T and U be either PDM or PDE random variables. Let Xpv oo Ko
yl. N y“ be a broken random sample from the T-U population. Then

the M.L.P ¢™ 1s an optimal strategy to match the x's with the y's

in the sense of maximlzing the expected number of correct matches.

2.7 Monotonicity of E(N{¢~))

with Respect to Dependence Parameters

Repairing of broken random samples based on the avallable data
in two files was discussed in Sectlon 2.4. It was observed that
data based optimal matching strategles exist when data come from
populations having certain types of positive dependent structures.
[t is therefore reasonable to expect an optimal matching strategy to
perform better when there is some kind of positive dependence in the
population than when the data in the two files are stochastically
independent. Our objJectlive in this sectlon 1s to present a precise
account of such intultive results with regard to the maximum llkeli
hood pairing ¢*. To thls end, we will draw upon the results of
Section 2.6. We begin with a definition from Shaked (1979):
Definition 2.7.1: Let J be a subset of R. A kernel K defined on JxJ

1s sald to be conditionally positive definite (c.p.d) on JxJ iff

T e

v AR A R K A__A a e AR S 3 m__a o m w IR W e
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(1) K(x,y) = K{y,x), V v,y € J; that 1s K is a symmetric kernel.
{11) Let m be any positive integer. For arbitrary real numbers
al. C ey am and for every cholce of dlstinct numbers Xys oo
X from J, it holds that
m m m
1%1 3%1 K(xl.xj) ala3 > 0 whenever 151 a, = 0 (2.7.1)

It is pertinent to note that this definitlion is related to the
well known concept of a positlve definite kernel, which 1s used in,

among others, the theory of characteristic functlons. The nonnega-

m m
tivity of the quadratic form Y 1} K(xl.xj) aiaJ without requiring
o 1-1 j=1
the condition J a, = 0 in (2.7.1) 1ls a standard way of defining
1-=1

positive definite kernels (Widder, 1941, p. 271). We shall now glve
an example of a c.p.d kernel which will be used 1n the sequel.
Example 2.7.1: Let J = {1,2, ..., n}, where n is a fixed positlve

integer. To verify that the kernel K(x,y) is conditionally

[(x:y)

positive definite on JxJ, let m be a positive integer. For arbitrary

real numbers a ay and for every choice of distinct integers

REEL
11. Cey 1m from J, we have
m m
a%l 3%1 K(iq,iB) a ag
=y ) a a
a,f:1 -1 a8
a B

-y [—— PrEN B N Foy R

P ——

.
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= -
n
WmB
[

>0 (2.7.2),

where we have used the fact that, in view of the integers 11. Im
being distinct, 1°=1B Aff a=8.
: m
g Note that we did not have to impose the conditlon ¥ a, - 0 to
i i=1

arrive at (2.7.2). Also, the fuaction I(x<y) 1s clearly symmetric in

x and y. Hence, 1t follows from (2.7.2) that K(x,y) is positive

T W -

definite and, consequently, is also c.p.d.

We will need the following lemma.

Lemma 2.7.1 (Shaked, 1979): Let T and U be PDM or PDE random vari

ST NI B

ables wlth jolnt distribution function H(t,u). Letting F(s+) stand

:

for the common marginal distribution of T and U, define Ho(t.u) z

F(t)«F(u), the dlstributlon function of T and U In the case of

i v B A

independence of the variables. Then we have the ordering

EH(K(T.U)) > EH (Xx(1T,1)) (2.7.3)
o

e e -

iff K(.,.) is a ¢c.p.d kernel, provided the expectations exist.
Theorem 2.7.1: Let the jolnt density of T,U have MLR property

N (2.4.4). Let HO.H be as in Lemma 2.7.1. If N = N(¢") 1s the number
4

of correct matches due to the M.L.P ¢*, then

T

E (N) > 1. (2.7.4)

..
s
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Proof: 1It follows from the general representation of N(¢) in

R =5 WP 3 Db

: equation (2.6.11) that
By
¥
#
’ o EH(H) = n PH(Rll = R21) = n EH((K(Rll'R21)) (2.7.9)
.i where K(x,y) = I(x-y)' Now, recall from example 2.7.1 that K(x,y) 1is

o
™

c.p.d. on the domain JxJ, where J = {1,2, ..., n} 1s the common

e
i

support of Rll and R21' It was established in Theorems 2.6.2 and
4 2.6.3 that R ana R2

et 11 are PDM (PDE) according as T and U are POM

1

~ﬁ (PDE). Invoking Lemma 2.7.1, we therefore obtain

2 E (K(R \R, 1)) > EHO(K(Rll.Rgl)) (2.7.6)

P e
-

ey Under Hy, Rjy and Rp) are independent. Also, Lhese ranks are
&
marglinally discrete uniform random varlables on 1,2, ..., n. Hence,

‘4
o w
t“ e get
B
4 - =
! By (K(RjWRyp)) = Py (Ryy = Ryy)

o o fom
. i
5 n
oy = Y P(R = k) P(K = K) s
B o1 11 ?1 @

P T
e 3 S
i
o
3
[ aad
A

= 1/n . (2.7.7)
‘;;‘1 ‘\’:1
ﬁx Equatlons (2.7.9%) to (2.7.7) imply the deslired inequallty: A
L} At

1
L

N E M) > n - -1, 0

=

t‘ %
)
e
na
E3
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We conclude from (2.7.4) that ¢® provides, on the average, more
correct matches when the data in the two flles come from certain
positively dependent populations than when they are independent. In
particular, this fact holds for the blvariate normal distribution
with positlve correlation as well as for Morgenstern distributlons
in Equation (2.6.14), where the dependence parameter a > 0. In the
light of Theorem 2.7.1, it 1s natural to conjecture that EH(N)' as a
functional of the distribution function H, is order-preserving with
regard to certaln partlal orderings of the space of all continuous

bivariate distributions which have fixed marginals (those of T and U}

and exhibit positlve dependence. Although no proof of this conjec

--:.‘2.'

ture 1s avallable at this time, we offer further evidence in support
of this conj)ecture in the nex* two theorems.
Theorem 2.7.2: Suppose that a broken random sample comes from the

family of densitles given by the equation

h(t,u) =1 + a (1 2t)(1-2u), 0 < t, u<land 0 <a <1l (2.7.8)

Then, E,(N) is monotone increasing in a.

e o |
25

e

Proof: Note that in (2.7.8), a = 0 means T and U are independent

and we might say that the farther a is from O the more the positive

25
[

dependence between T and U. For this family, the marginal distribu-

tions of T and U are uniform on [(0,1].

=

It follows from equatlion (2.6.27) and Corollary 2.6.1 that the

-5

Joint probability function of the ranks Rll and N?l can be canoni

cally expanded as follows:

Be<

‘._“th J‘
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(2.7.9)
k=1

where 1,3 - 1,2, ., n and {"k(-)}2 is a set of functions satisfy-

ing the orthogonality conditlons in (2.6.13). Using the expression

s =8

(2.7.9) for we get

13 as
= - R
EQ(N) n P(Rn 21)
,, d
n 3 =
A 1:1 1
at
N
f&? n n K
"e:‘U!.- 1 n 2 ry
4 iEy =ne o dne L (e (n (1))7]
n 1=1 k=1
b
P o a
o 1Yy (b o (2.7.10),
L;;ijt n k=1
AT E
o where, after change of the order of summatlions on i1 and k, we have
‘(:‘.I
B
?L“ used nonnegative constants b glven by the equatlon
nf“ g K <
RO
Eﬁy n
: L) (nk(n)e. Kk - 1,2, ..., n %
o 1:1 i
5"254 o
why N
;ﬁ,' It follows from (2.7.10) that Eg(N) 15 a polynomlial in a and hence Eg
i3
.“l‘ vy
ﬂﬂ' it increases with a, as a goes from 0 to 1. o
o
e A
ﬁég Theorem 2.7.3: Suppose that a broken random sample comes from the 2§
L\
i
.q" bivariate normal distributions glven by (2.6.15), where we assume
"
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that the correlation parameter p 1s nonnegatlve. Then EP(N) is
increasing in p.

Proof: It follows from equation (2.6.27) and Corollary 2.6.2 that

113 =P(R11 = 1, R?1 = 1)
@
=L nen 3 o6
n ¢ k
k=1
@ [- <]
n 2 2 2
e @11 P e
k.=1 k_=1 1'72 1'72
1 2
*
T “ n _(n) (n)
v kil ko P Wy AL A AL e 2h B
1 n 1 n 1 n
(2.7.11)
where, for fixed L = 1,2, ..., [WLQ) K } is a set of ortho-
RREL
gonal functions on (1,2, ..., n}. Using the expression (2.7.11) for
¥, ., we obtain
ii
EP(N) = np(Rll:R2l)
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k=1 1-=1

(1))?

(2) (1))2

K

L S TS S S (" (11)%1,
kK_=1 Kﬂzl i=1 ) L o

(2.7.12)

wh2re the order of summatlons over 1 and ky, ..., Kk, hiave been

reversed because the terms in the expansion (2.7.11) are all non-
negative. We conclude from (2.7.12) that E (N) is a polynomial in
P

p and hence 1t increases with p as p goes from 0 to 1. a

I- AV

As we close this section, we shall state a result due to Chew
(1973) which somewhat resembles, though conceptually different from,
the inequality EH(N) > 1 1in (2.7.4). Recall the notation M(¢) in
(2.4.9), which denotes the posterior expected number of correct
matches due to the strategy ¢. Argulng that M(¢) = 1 when ¢ 15

randomly chosen from ¢, he proved the following result:

P T e N - - Y 000

Theorem 2.7.3: (Chew, 1973): Let xl. c e xn and Yo oo yn be a

broken random sample from a bivariate distribution possessing mono-

tone likelihood ratio. If Xy < e <X and y1 < ... < yn, then the

- o B F ] B s w8

-
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posterior expected number of correct palrings using the M.L.P ¢” 1is

at least unity, that 1s

Me*) > 1 (2.7.13)

It should be noted that the lnequality (2.7.13) wua:s derived
from a Bayesian perspective, whereas in our inequality (2.7.4) the
expectation is over all posslible samples. Filnally note inat while
our comparlson is between dependent and independent pojulations for

the M.L.P., Chew's lnequallty compares M.L.P with random pairing.

2.8 Some Properties of N(e¢".,c)

The maximum Iikelihood pailring, »*, was introduced in sub-
section 2.4.2 and some of 1ts small sample propertles were studled
in Section 2.7. Specifically, the behavior of E(N(¢")) was discussed
while holding the sample - slze n constant and changing only the degree
of dependence in the population. We shall now fix the parameters
describing dependence in the population of (5) and allow n to tend to
infinity in order to study the behavior of N(¢",¢). Later, in this
sectlion, we shall present the results of a Monte Carlo study about
N{9®,c) In which we vary the dependence parameters even as n takes
different values.

[n this section, the notatlions of Section 2.2 will be used
'reely. Recall that N(¢") and N(¢”,c) have the shorter notations N
and N{¢) respectively. We start with a review of Yahav (1982)'s

results concerning E(N(c¢)).
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Assumling that the dlstribution of T and U is such that the con
ditional distribution of U given that T = t 1s (univarlate) normal
with mean t and variance 1, Yahav (1982) derived the limiting value
of un(c) = E{(N(e)/n), as n » =, by using the representation (2.5.2)
in which the summands are functions of the order-statistics of
Ul‘ e, Un and the concomitants of the order statistics of
RIREEL Tn' His proof relled on an approximatlion theorem
(Bickel and Yahav, 1977) about the order-statistics for the above
model. Furthermore, he reported the findings of a Monte. Carlo study
for a particular case of his model, namely, T and U are blivariate
normal wlith correlation p.

First, we dlscuss the large sample behavior of N(¢)/n in case of
zamples from an arbltrary population. The properties of its expected
value are avallable as a consequence. Second, we indlcate
how Yahav's simulation study of the small sample properties of pn(c)
can be improved upon. We shall then present the results of our own

Monte Carlo study of un(c) when n is small.

Theorem 2.8.1: For broken random samples from an absolutely
pr
continuous -tistcibution, N&g) + u{e}, as n *» o, (2.8.2)

where y(e) - P(F(T ¢) <« G(U) < F(T+e)).

Proof': Let Ln = Nﬁﬁl. Recall the representation (2.6.6) for N(¢) as

a sum of exchangeable Indicators:

.8.3
A (e) (2 )

: s

j /'Y

e w
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I It follows that
l E(Lr.) = nP(Anl(c))/n = P(Anl(c)) . (2.8.4)
Note that,
E(L ) = n "[E(N(c)) + E(N(ec))], (2.8.9)

where E(N(c),\(z) is the second factorial moment of N(c¢). Using the

exchangeable representation (2.8.3) agaln, we get

-2, (2)
n [n P(Anl(c)Anz(c)) + nP(Anl(c))]

2
E(l.n)

——
o
P

n
i Let n = z |3
2y la lai
n
“26 = { 82“1, a=1,2, ..., n, (2.8.6)

i-1

where the sequences [E } and (% } are defined in (2.2.12)
lal 2al

m‘
4
o ot

Using (2.8.6), we get

Anl(c) = (nu/n < 0, nplln < 0) (2.8.7)
ﬁ and
2 2
A (¢)A () = N N (n . /0 < 0) (2.8.8)
g nl n2 1=1 -1 1)

o,

=

;X

K <%
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T

Note that, gliven Hl = (Ul), the infinite saquence
- 1
ad inf.

S112° Sar

is exchangeable. Hence, by the Strong Law of Large Numbers (SLLN)

for exchangeable random varlables (see Chow and Telicher, p. 223),

as=s

n,,/n > E(§

1 I!l) as nowo (2.8.9)

112

where the conditlonal expectation 1s equal to F(t_-¢) - G(ul). It

1
followes from (2.8.9) that
23F 2.8.10
nll/n » F(Tlfc) G(Ul) (2.8.10)
We can show by similar arguments that
a*s
n. /n 3 F!T -¢) - G(U ) (2.8.11)
la @ a
ass
n. /n + G(U ) - F(T +¢) (2.8.12)
2a a a

where a = 1,2.

Using the fact (see Serfling, 19%¢ p. %2) that a sequence of
vectors converges almost surely to a given vector iff the component
wise sequences converge almost surely to the appropriate components

of the l1imit, we get from (2.8.11) and (2.8.12)
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nllln j F(TIVC) - G(Ul)
n21/n G(Ul) - F(Tlvt)
a*s
* (2.8.13)
n12/n F(T2 c) - G(U2)
n22/n G(Uz) - F(T2fc)

It follows from (2.8.7), (2.8.8), (2.8.13) and the independence of
Ty s
(Ul) and (Uz) that
P(Anl(c)) + ule) (2.8.14)
and
P(A__(e)A _(e)) = uz(c) (2.8.1%9)
nl n2
Using (2.8.4), (2.8.9%), (2.8.14), (2.8.15) it 1s easy to verify that,
as n’eo,
E(Ln) + ule)
and (2.8.16)

var(L ) + 0
n

It is well known that (2.8.16) implles the convergence 1n prabability
in (2.8.2). (B
The following corollary generalizes Yahav (1982)°s result concernlng
uu(c), the first moment of N{(¢)/n.

Corollary 2.8.1: For p . 0,
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Lp

(1) !L%l %+ ulc), as nro. (2.8.17)

(1) ENCY /0P s uta) 1P, as now. (7.8.18)

Proof: The number of ¢ correct matches can at mcst be n, the

number of pairs In the unobserved bivariate data. Hence,

0« ML)

I, vn = 1,2,
n

In other words, {N(¢)/n} is a uniformly bounded sequence of random
variables. It is well known that convergence in probability and L
convergence are equivalent for such sequences. Hence, (1) is an easy
consequence of Theorem 2.8.1. It follows from (1) and Theorem 4.5.4
of Chung (1974) that the pth moment of N(¢)/n converges to
[u(c)]p. Hence (11) also holds. n

Note that no assumption about the conditional distribution of U
glven T was made elther in Theorem 2.8.1 or Corollary 2.8.1.

Yahav generated samples from a bivariate normal parent with mean
vector (8) and covariance matrix

2
p2/(1-p2) pz/(l—p )
(2.8.19)

2
p2/(1 p?) 1, (1 p%)
Note that in (2.8.19) the varlances of T and U are functions cof the
cerrelation of T and U because Yahav r:*quires that the conditlonal

distribution of U given T - t be rormal with mean t and varlance 1.
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The limiting value of un(c) for hlis particular model was given by
the integral
a
we) = | (B2 L &) | ax’ER _ 5)) qax) (2.8.20)
—= vI+p vTsp

He computed w(e) by numerical integration for ¢ = 0.01, 0.05%, 0.1,
0.3. He also provided Monte Carlo estimates of un(c), for n = 10,
20 and 50 using the simulated data on T and U. The following table

is a tvpical example from his tables.

Table 2.1 Expected Average Numher of
¢-Correct Matchings, ¢ = .01

(Yahav (1982))

P ulo(c) uzo(c) Mg le) ule)

.01 .5864 .5326 .952752 .52269
.01 .1984 .1648 .12712 .11522
.10 .1512 .1058 .07600 .05912
.30 .1084 .0686 .03888 .02144
.50 .1020 .0582 .02720 .01382
.70 .0960 .0614 .02616 .01051
.90 .0972 .0540 .02064 .00864
.95 .0976 .0496 .02144 .00829
.99 .0960 .0484 .02128 .00804

[t is clear from Table 2.1 that un(c) and u(e) are decreasing
as p ranges from 0.01 to 0.99. However, one expects that an optimal
strategy such as 4" has the property that un(c) as well as u(e) are
monotone increasing in p. The problem here is not with the M.L.P,

¥”, but with Yahav's model in (2.8.19) because, as the correlation

PR 3 d A el WSl e o er Lo ap ot g goe e alt = . i ae A - T | Ly e i o
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~hanges its value, so do the marginal variances of T and U. To
rectlfy this problem, we assumed a bivarlate normal model for T and U

in which the means were zero and the covariance matrix was

(2.8.21)

For each combination of four values of n, namely 10, 20, 50 and 100,
and twelve values of p, namely 0.00, 0.10 (0.10), 0.90, 0.95, 0.99,

a sample of size 1000 was penerated from the bilvariate normal popula-
tion using the IMSL subroutlnes. These data were used to obtailn
Monte-Carlo estimates of un(c). where ¢ was glven the values 0.01,
6.05, 0.1, 0.3, 0.9, 0.75, 1.0. Furthermore, it is easy to show

that, for the model in (2.8.21),

ule) = P(12) < e/v2(T75Y), (2.8.22)

where Z 1s a standard normul random variable. It is clear from
(2.8.22) that u(c) i1s a monotone increasing function of p. Using
standard-normal CDF tables, u(e) in (2.8.22) was computed for each
combination of the twelve values of p and the seven values of ¢
mentioned above. We have presented the estimated values of un(c)

and the limiting value u(e¢) 1in Table 2.2 to Table 2.8.
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Table 2.2 Expected Average Number of
c-Correct Matchings, ¢ = 0.01

67

P ulo(c) uzo(c) “50(‘) uloo(c) wie)

0.00 0.106 0.054 0.025 0.015 0.008
0.10 0.113 0.0%9 0.028 0.017 0.008
0.20 0.127 0.068 0.031 0.018 0.008
0.30 0.138 0.075 0.034 0.02¢ 0.008
0.40 0.155 0.083 0.038 ¢.023 0.008
0.50 0.174 0.095 0.044 0.026 0.008
0.60 0.199 0.109 0.051 0.030 0.008
0.70 0.231 0.129 0.061 0.036 0.008
0.80 0.279 0.162 0.077 0.046 0.016
0.90 0.374 0.222 0.109 0.067 0.016
0.95 0.476 0.296 0.151 0.094 0.024
0.99 0.700 0.521 0.299 0.191 0.0%6

Table 2.3 Expected Average number of
e-Correct Matchings, ¢ = 0.05
P ulo(c) "?O(C) u50(C) ulOO(c) ulel
0.00 0.127 0.076 0.047 0.037 0.012
0.10 0.134 0.082 0.051 0.040 0.032
0.20 0.149 0.093 0.9%6 0.043 0.032
0.30 0.161 0.099 0.051 0.047 0.032
0.40 0.180 0.109 0.066 0.052 0.040
0.%0 0.201 0.124 0.074 0.057 0.040
0.60 0.228 0.141 0.08% 0.06% 0.048
0.70 0.262 G.166 0.101 0.076 0.048
0.80 0.317 0.205 0.124 0.094 0.064
0.90 0.420 0.280 0.i74 0.135 0.088
0.95 0.529 0.368 0.237 0.186 0.127
0.99 0.769 0.631 0.459 0.377 0.274
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Table 2.4 Expected Average Number of
¢ -Correct Matchings, ¢ = 0.1

e S

P ”10(” ”20(':) USO(C) "100(” wic) a
0.00 0.154 0.102 0.075 0.065 0.056 !
0.10 0.160 0.110 0.080 0.069 0.056
0.20 0.177 0.121 0.087 0.074 0.064
0.30 0.189 0.130 0.093 0.080 0.064 "
0.40 0.210 0143 0.10) 0.088 0.072 &
0.50 0.234 0.161 0.112 0.096 0.080
0.60 0.264 0.181 0.127 0.108 0.088
0.70 0.302 0.210 0.149 0.126 0.103 g
0.80 0.363 0.2%8 0.182 0.154 0.127 &
0.90 0.u77 0.347 0.254 0.218 0.174
0.95 C.594 0.452 0.342 0.299 0.251
0.99 0.839 0.744 0.630 0.580 0.522 ﬁ
Table 2.5 Expected Average number of ﬁ
o ¢-Correct Matchings, ¢ = 0.3
&Q‘
o o e —- R
L P biole) by le) Megle) Mloo'®) uie) g
) 0.00 0.25% 0.208 0.184 0.175 0.166 i
i 0.10 0.269 0.223 0.195 0.186 0.174
Rt 0.20 C.284 0.237 0.207 0.197 0.190
I 0.130 0.30% 0.293 0.221 0.211 0.197 :
oy 0.40 0.334 0.279 0.240 0.229 0.213 b!
w4 0.50 0 363 0.304 0.263 0.250 0.236
_— 0.60 0.401 0.336 0.293 0.278 0.266
St 0.70 0.455 0.382 0.337 0.320 0.303 ﬁ
R 0.80 0.932 0.457 0.403 0.386 0.362 :
Y 0.90 0.670 0.593 0.540 0.519 0.497
A 0.95 0.802 0.733 0.689 0.674 0.658 ﬁ
fr3e 0.99 0.978 0.968 0.961 0.961 0.966
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. Table 2.6 Expected Average Number of

l c¢-Correct Matchings, ¢ = 0.5

ﬁ P ulo(C) vzo(c) NSO(C) "100(':) ule)
0.00 0.353 0.311 0.290 0.2381 0.274

g 0.10 0.367 0.330 0.306 0.298 0.289
0.20 0.390 0.348 0.325% 0.31% 0.311
0.30 0.417 0.371 0.3484 0.336 0.326

b g 0.40 0.452 0.400 0.373 0.362 0.354

§ 0.5%0 0.485 0.437 0.404 0.393 0.383
0.60 0.528 0.478 0.446 0.435 0.425
0.70 0.591 0.536 0.506 0.495 0.u84

g 0.80 0.675 0.628 0.594 0.584 0.570
0.90 0.811 0.773 0.752 0.744 0.737
0.95 0.917 0.896 0.888 0.885 0.886

& 0.99 0.998 0.999 0.999 0.999 1.000

Table 2.7 Expected Average number of

i ¢-Correct Matchings, ¢ = 0.7%

& P vm(»:) "20(‘) uso(c) uloo(t:) u(e)
0.00 0.468 0.433 0.416 0.409 0.404

! 0.10 0.488 0.45%54 0.437 0.429 0.425
0.20 0.514 0.477 0.461 0.453 0.445
0.30 0.539 0.505 0.487 0.480 0.471

ﬁ 0.40 0.582 0.542 0.522 0.514 0.503

] 0.50 0.621 0.586 0.560 0.95% 0.547
0.60 0.662 0.633 0.613 0.606 0.%99

” 0.70 0.727 0.694 0.679 0.673 0.668

{;j 0 .80 0.810 0.786 0.772 0.768 0.766
0.90 0.919 0.908 0.900 0.904 0.907

. 0.9% 0.979 0.976 0.978 0.979 0.982

& 0.99 1.000 1.000 1.000 1.000 1.000
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i Table 2.8 Expected Average Number of

¢ Correct Matchlngs, ¢ : 1.0
. S R P U S
, i Y10 20 50 100 ¥

R 0.00 0.570 0.545 0.531 0.524 0.922
iz. 0.10 0.593 0.566 0.555 0.549 0.547
i 0.20 0.621 0.595 0.581 0.576 0.570
) 0.30 0.646 0.622 0.611 0.605 0.60%
S 0.40 0.690 0.664 0.6%0 0.644 0.627

’ 0.50 0.729 0.707 0.691 0.688 0.683
o 0.60 0.772 0.793 0.744 0.741 0.737
) 0.70 0.830 0.812 0.807 0.805 0.803
i{ 0.80 0.898 0.889 0.887 0.88% 0.886
W 0.90 0.970 0.970 0.972 0.972 0.979
M 0.9% 0.996 0.996 0.997 0.997 0.998

’ 0.99 1.000 1.000 1.000 1.000 1.000

i
|
s
I
.

Note that, as expected, un(c) is a monotone increasing function
of p for each fixed ¢. Furthermore, the quality of the merged file is
quite good if we want to recreate contlngency tables with

intervals of size .5gs or more and the correlation p ls > 0.5.
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2.9 Poisson Convergence of N{e™)

Let us revisit, for a moment, the card-matching problem which
was dlscussed Iln Section 2.3. Some of the distributional properties
of the number of correct matches in randomly arranging one pack of
cards agalnst another were stated in Proposition 2.3.1. In partic
ular, the well known approximation of the dlstribution of the number
of correct matches by a Polsson distribution with mean 1 was
mentioned. Thls Polsson approximation may be motivated by the
observation that the occurrence of a match tends to be a rare event
when the number of cards in the matching problem grows indefinitely.
Inspired by this result, it is natural to ask whether Polsscon distrl-
butions can approximate the distribution of the number of correct
matches due to data. based matchling strategies. The answer 1s in the
affirmative in the case of the maximum likelihood palring ¢". Our
alm in thls section 1s to establish the Polsson convergence of N(e®).

Using the general representation in Corollary 2.6.1 for the

number of correct matches, we can write
n
N - Nle™) = } I (2.9.1)

where Apy = (Rpy = Rpy), 1 = 1,2, ..., n are exchangeable events. It

follows that E(N) = nP(Anl). Zolutikhina and Latishev (1978)
sketched a proof of the fact that the expectation of N converges to o
constant as n tends to =. Thelr approach starts with writing p(Anl)

as the triple integral

L e S R T Y D GRS TR CEA R Ch O
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1 an - ] p
. [ | | expl(n-1)in(s(x,y,0))1d8dH(x,y)

6=0

where s(x,y,0) = p3(x,y) + ZJp,_(x.y)pz(x.y) * CcO0Ss20,
pl(x,y) = F(x) - H(x,y),

Pz(x.y) - Gly) - H(x,y),

H

and pa(x.y) 1 - pl(x.y) - pz(x.y). Y x,y €R 0 <06 <

Using the well known method of Laplace (Bleistein and Handlesman
1975), they expanded this integral in powers of % and concluded that

P(Anl) = 2 for large n, where the constant a is glven by

a =~ [ [h(x,G

-

]_ -
F(x))/h, (G Ye(x))1dx (2.9.2)
They concluded that, in large samples, E(N) = a.

In this sectlion, we shall generalize the result of Zolutikhina
and Latishev (1978) by showing that the dth factorial moment of

N(d)). converges to ad.d » 1, under certain conditions on the

N, E(
T

distributlion of (y). As a consequence, we shall obtaln the weak

convergence of i to the Polsson distribution with mean a.

We begin with the observation that the ranks

R, ) and R, = (R
n M

A b s R, ) are invariant under
11 1 n

2 21 2
increasing functions of T and U respectively. For this reason, N is

also lnvariant under such transformations. Without loss of general

ity, we therefore replace T and U by F(T) and G(U)Y respectively,
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where F(G) 1s the marginal distribution function of T(U). This so-
called probabillity integral transformation allows us to assume that
T and U are marglnally uniform random variables and that the parent

CDF, H(t,u), 1is the joint CDF of F(T) and G(U). Furthermore, the

1
integral (2.9.2) simplifies to a = | h(x,x)dx. We might recall
0

from Section 2.2 that this simpler version of a was called ». Ve
shall henceforth use these simplifications and seek to prove that N
weakly converges to the Poilsson distribution with mean \.

Following 3Schwelzer and Wolff (1981), the joint CDF of F(T) and
G(U) will be called a copula. In general, a copula 1s denoted by the

symbol C{.,.) and the following Frechét bounds apply to any copula:

max{x+y-1,0) < C(x,y) < min(x,y), V (x,y) € [0,1]2 (2.9.3)

However, for the purpose of deriving the distribution of N, we shall
consider only a part of the spectrum (2.9.3) of all possible copulas.
To motlivate our cuolce of the copulas, first note that, in this
chapter, only absolutely continuous Jolnt densitles are allowed for
T and U. This means that the extremes min(x+y-1,0) and min(x,y) are
ruled out because these copulas correspond to degenerate joint
distributions for T and U (Mardia 1970, p. 32). Second, Goel (197%)
has observed that ¢* - (1,2, ..., n) is M.L.P Iff the joint density
of T and U has the M.L.R property. lowever, M.L.R property neces
sarlily implies that the distribution function of (6) must be such
that C(x,y) > xy. for all (x,y) in the unit square (Tong (1980),

p. 80). We shall henceforth assume that the Jjoint CDF of T and U will
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satlsfy the inequalities

Xy < C(x,¥) < mln(x,y), V (x,y) € lo.llz. (2.9.4)

Note that, in (2.9.4), T and U are independent iff C(x,y) = xy.
Positive dependence of T and U occurs when C(x,y) » xy, for all x and
y. In the remalnder of this sectlon, the jolnt CDF of T and U will
be a copula C in the class (2.9.4) and the corresponding jolnt density
function will be denoted by c(x,y).

Since El and 52 are some permutations of (1,2, ..., n), we find
it convenient to use the notation ¢ for reallizations of 51 or 52.
The common support of Bl and 52 is denoted by &, the set of nt
permutations of 1,2, ..., n.
We will now formally establish an equivalence between the card matching

problem and the M.L.P in the independence case.

Proposition 2.9.1: Ler T and U be independent random variables.

Then the distribution of V = (V Vnn) defined in (2.2.6) 1s

nlt
(&

it

the same as that of the vector é ey 6n) where

1!

=1 .1 -1,2, ..., (2.9.5)

Furthermore, the random variables &y, ..., &, are exchangeable.
Proof: Note tnat the rank vectors

R, )

R, = (R R.) and R, = (R, ... R,

~1 11 77" Tln

are independent because T and U are, by hypothesis, independent

randem vaslables, and that 5

and R_ are discrete uniform on ¢.
~e

1

[

2

: =2 MRl

At

-

s

=51

[,'
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That ls, ;
P(R = ¢) = L v € ¢ and = 1,2 (2.9.6
__Q-q».-m, @ a a = 1,2, .9.6)

O O e =

As V,,'s are indicators of the occurrence of matches, the

e

-

. 8 in (2.9.5) can be looked upon as

Bernoulll variables & ., ...
nl nn

indicating whether R11 matches with Y or not, {§ = 1,2, ..., n. [t is

clear that the common support of V and & is

n
= P H = , =|2| ssey » .
A {(al. an) a, Oor1l, i-1 n } a_#n 1}

B & =2

(2.9.7)

Note that A has 2™ n sample points.

Let a = (al. PN an) be a tfixed but otherwise arbitrary point i
-~ I

ﬁ in A. Define the events
g D(a.p) = [y € &:1 -a,,1 -1,2? nJ :
ig N.‘P - - (‘v(l)—‘tp(l)) ’.' [} [ ) » ;
(2.9.8) |
i
! where ¢ € ¢. Then, using the independence of R, and R, and |
|
% (2.9.8) we get !
_ - - . |
P(V = a) = P(I(R Ry - . 1 - 1,2, » 0} |
" 1121 |
T ’
) 4
R, ‘
o E° P(I _ a,, 1 : 1,2, L onlR, 9) |
2 (R“—tp(l)) 1 2 .
0 i
|
e E° plI a., i 1,7 1) |
R4 - Ry et)) 2t v ! |

1

H, ‘

E° P(R, € D(a.¢)) (2.%.9)
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We now observe that the components of a dictate which positions
of ¢ - (e(l), ..., @(n)) must be matched or mismatched by any permu
tation ¢ in order that ¢ € D(a,g). Clearly, the number of ways in
whlch we can permute the integers 1,2, ..., n and produce ¢'s that
belong to D(a,¢) depends only on the fixed vector a and the fact that
¢ s an arrangement of n distinct integers. Hence the cardinality of
D(a,¢) does not change as ¢ ranges over ¢. In particular, D(a,e)
and D(a,»") have the same number of sample points, where

" = (1,2, ..., n). Using (2.9.6), we therefore obtain
”(51 € D(a,¢)) = P(El € Dla,e")), Vo €& (2.5.10)
The right hand-side expression in (2.9.10) is a fixed number depen

ding on " and the chosen a. This means that in (2.9.9), we seek

the expectation of a degenerate random variable. Hence, we obtain

P(V - a) - P(R € D(a,e"))

~

Because a was arbitrarily chosen from A, we finally infer from

(2.9.11) that

7 ' A L T O Y S (2.9.12)
nl nn nl nn

L LR P L L L LI LIS ; A ANy A BN S
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The exchangeabllity of § . An follows from the fact that the

l'
distribution of 51 is uniform over &.
It readily follows from Proposition 2.9.1 that, in the indepen-

dence case,

n n
§ v, 735 & (2.9.13)

n
In view of (2.9.13), if we let Zn = ¥ & ., then the exact as well

=)

1}

¥ V_. can be derlved by
1-1 ni

studying Z,, which is same as the no. of matches in the card matching

as asymptotic distributions of N(e¢*)

problem. As stated in Proposition 2.3.1, the asymptotic distribution
cf Zn is Polsson with mean ). We now present another proof of this
well known result. The novel part of our proof 1s that we establish

4 ard consequently

cartaln dependence properties of 6"1. ceen 80

derive the limiting distribution by using only the first two moments
of Z .
n

Our program can be stated as below:

(i) Show Lhat 6n1's have a certain positive dependence strucrure.
(11) Invoke a theorem due to Newman {(1982) to arrive at the Polsson

convergence of N in the independence rase.

We start with the definitlons of some concepts of dependence of

random variables.

Lt ol

E o

»

T Te W T e T 608 N

ey WO S W

M 3ol A of g i s oy s W5 g oy o o S Py o, Ao 2ty Ao WA K9 o A AP o e ’inf ot otosts "niansdmsa
‘ : Lo b Mo Fo L o2y A e T P e o 2 a2




78

Definition 2.9.1 (Lehmann, 1966): xl and x2 are sald to be positlve

quadrant dependent (PQD) iff

P(x, > x X, > x2) > P(x

1 1t % > xl) P(x2 > xz), v x X, ¢

1

(2.9.14)

Definition 2.9.2 (Newman, 1982): x;, ..., X, are sald to be linearly

positive quedrant dependent (LPQD) iff for any disjoint subsels A,B

of {1,2, ..., n] and positive constants L
Y a x, and § a x are PQD. {2.9.1%)
KEA k'k kGB Kk

Definition 2,9.3 (Esary, Proschan, Walkup, 1967): xy, ..., X, are

sald to be assocliated iff for every cholce of functions

f (x

1 X . xn) and f?(xl. ey xn), which are monotonic inci -»sing

in each argument,

R BE R R OB B O 2R WP &=

cov(fl(xl. . xn). fz(x . xn)) > 0, (2.9.16)

1'

provided fy(xy, ..., xp) and fo(xy, ..., X4) have finite variance.

[t is well known that association is a stronger property than

row. GED

LPQD prop=rty of n random varlables x , X . We will now

o n

establish that An 8 in (2.9.9) possess a weaker version of

1 "7 "nn

A

the [.PQD property.

femma 2 9.1: Fork . 1,2, ..., n 1, E
W

k -

G

Y &, and &  are PQD. (2.9.17) \g

i=1 v

[J

Proof: Fix k : 1,72, ..., n-1. Then, using (2.9.14), we sce thal ii

=

. . . , - —n e
O AN AMAMA AN AN R o S o NSNS
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k
E 8 and énn are PQD if

k
& > x.) 2 P( E 8§, > X)) PU8 > x.), ¥V x,, X,ER

121 nil 1l nn 2 121 ni n 2
(2.9.18)
Because énl‘s are binary random varlables we obtaln
1 if x2 <0
P(s > x,.) = (2.9.19)

nn 2

0 if X, > 1

It is clear from (2.9.19) that (2.9.18) holds for any x;, provided

x, < 0 or X, 2 1. Hence, it suffices to show (2.9.18) for

) = (& = 1).

0 < x, <1, However, if 0 < x
2 nn

2 < 1, then (énn > X

2

It therefore remains to be shown that

Kk k
P( ¥ 6n1 > 1, énn = 1) > P( ) 6n1 > 1) P(énn = 1),
i=1 1=1
veLe=0,1, ..., k. (2.9.20)
By definition of 6n1,
P(é = 1) = P(R = 1) = 1
nt - - 11 " n’
(2.9.21)
1
and P(6nl =0) =1 -~ n .
k
writing P( § & , > 1) in the form
121 ni

IR R

N

-~

v

A

R |

l| ZA
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n

n
P(Y & >, 8 =0) + PCY & b = 1)
121 ni nn 121 ni nn

and using (2.9.21) we can rewrite (2.9.20) in a more useful form:

L=0, ....,.&K. (2.9.22)
Note that, in (2.9.22), k is a fixed integer. For a given k,
we now fix the value of & and proceed to establish the inequallity
in (2.9.22) by means of a combinational argument.

It 1s clear that we can express the event (4 = 0) or

n-1
as U (R = a). Hence we can write,
1n
a=1
k n-1
() & N > b, 6nn =0) = U J (2.9.23)
-1 " a=1 °®
where
X
= = = - 2.9.24
.JG (El Am > v, R1n a), a = 1,2, , n-1 (2.9 )

Observe that, in (2.9.24), Ju's are mutually disjolint measure

able subsets of . Let us now fix a = 1,2, ..., n-1 as well. Then,
any permutation ¢ in J, satisfles ¢(n) = a and (e(l), ..., ¢(n-1))
is an arrangement of the integers 1,2, ..., o-1,a4+1, ..., n producing

at least L matches of the type ¢(i) = 1 in the positions

i=1,2, ..., K. On the other hand, any permutation ¢ in
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Kk
() §4 2 L, énn = 1) satisfies ¢(n) = n and
i=1
(¢(1), ..., ¢(n-1)) is an arrangement of the integers 1,2, ..., n-1
ylelding at least % matches such as ¢(i) = 1 in the positions
1 =1,2, ..., k. Because a # n, it 1s clear that
k
#(JQ) < #( Y éni >, énn =1) , (2.9.25)
i=1
where #(A) denotes the cardinality of the set A.
Since a, k and Y were arbltrary cholces, we get from (2.9.23),
K ' K
#y o8 > 4,4 = 0) ¢ {n-1) #( ¥ & > 41,4 = 1)
321 ni nn 121 ni nn
k=12, ..., n-1; ¢ =0, ..., k (2.9.26)
Since 51 18 dlsgcrete uniform on & 1t follows from (2.9.26) that
k k
PC 3 6ni 2 t'énn =0 < P(.Z 6nl 2 l'énn =1« (n-1)
1=1 i=1
(2.9.27)

Multiplying both sides of the inequality in (2.9.27) by n and using
(2.9.21) we establish (2.9.22), which implies that (2.9.20) holds. QO

We now state two useful results due to Newman.

Lemma 2.9.2 Newman (1982): If x1 and x2 are PQD, then
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IE(exp(lrx1+13x2)) - E(exp(lrxl)) E(exp(13x2)|
< |rs| cov(xl.xz) for all r,s € R (2.9.28)
Q

Lemma 2.9.3 Newman (1982): Supposelthat X 1,00 X are LPQD. Then

n n n
¥ (ro,...,r.) - n ¥ (r)}l < ¥ ¥ Irr | cov.x ,x,)
xl.....xn 1 n 3-1 xJ J k=1 2-1 k' ¢ k'R
Kk <t
v e ce Pp €R, (2.9.29)
where ¥'s are given by
n
¥ = E(exp(y ¥ x,))
xl,....xn 31 33
¥ = E(exp(l r,.x.), =1,2, ..., n.
x, = BlexPULryxg). o
Suppose now that we choose the arguments ry, ..., Iy in (2.9.29)

equal to an arbitrary real number r, say. Assume further that
Xpo oo xn are exchangeable random variables so that they have

common characteristic function, namely ?x (r) and that the covariance
1
between any palr of the x,'s is equal to cov(xl.xa). It follows from

J
(2.9.29) that

-1)
j¥ (ry - ¥ ey < QLg*l* Ir'l2 covix, ,x.) (2.9.30)
X X 2 1'72
1 1
n
This estimate for approximating the characteristiec functilon of x5
i=1

=2 W & S

-]

<

B R O OB B B =58

i

e e I e & & B S B S . W N B W O EEES O B B = & o &
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by the product of the marginal characteristic functions of the x°'s
' o xn are LPQD. We now use Lemma
2.9.2 and show that, with regard to the variables &n

depends on the fact that x

1’ énn

an estimate similar to (2.9.30) can be obtained under the weaker
version of the LPQD property which i3 given . by (2.9.17).

Lemma 2.9.4: Let 6n1's be the Bernoulll variables in (2.9.%5) and

n
let Z = ¥ & .. Then,
n 1=1 ni

8 )

n n{n-1) 2
IYZ (r) - &, (M) < > irl cov(s n2)

é

n nl nl

B 2R 0 M 25 O B

Yn>2, r€r, (2

R

4 was established in

Proof: The exchangeability of & _, ...,
——— nl nn

Proposition 2.9.1. Hence, we obtaln

& ), vi=xy,

cov(én 8 ) = cov(&nl. 2

1 'n}

4 (r) = ¥ (r), v 3,
6nJ 6n1

Note also the well-known property that

l’é ()} <1, V)and V r

nj

[
i
L

:

B

From Lemma 2.9.1, we have

k
§ o and Ann are PQD, Vv k = 1,2,

1=1

=3

in view of the exchangeabillty of $n1s ---» $qn. wWe can restate this

property of the 6n1'8 as follows:
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Let A and B be non-empty disjolnt subsets of {1,2, ..., n} such
that B is a singleton. Then
Y & and § & are PQD (2.9.35)
iea ™ 1eg "

Fix n > 2 and consider the following finite sequence of statements:

.8

| (r) - ¥ (] <™ ?'1 Ir)? cov(s, ),

8

m nl 1’ n2
X

Vm=2,3, ..., n (2.9.36)
Nute that (2.9.31) is obtained from (2.9.36) by letting m = n. Ve
shall now establish (2.9.36) by inductlon on m.
By choosing A = {1}, B = {2} in (2.9.35), we find that 6n and

1

6n2 are PQD. The Lemma 2.9.2 readily implies that (2.9.36) holds for

m= 2. Now, let us assume that (2.9.36) holds for m = 2,3, ..., (n-1).

n n-1
splitting 3 §,, as the sum of } 6n1 and 6nn‘ we infer the PQD
i=1 1=1
n-1
property of } & . and & from (2.9.35). Hence we obtain again
121 ni nn

from Lemma 2.9.2 and (2.9.22)

| ¥ {r) - vn (r) - ¥ (r)]

n -1 6nn
) 6ni z 6ni
i=1 1=1
n-1
< || cov( ¥ &, )
1=1 ni nn
2
= |r] “(n-1) cov(énl.énzl (2.9.137)

Now, we shall invoke the induction hypothesis that (2.9.36) holds for

&S

s e

B 3 &g B
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m=n-1. Using (2.9.33) to (2.9.37) we finally establish (2.9.36)

for m = n as follows:

|y (r) - v'; (r]
nl
< |¥ n (ry - Yn—l (r) - ?ann(r)l
PR I s
121 ni 11 ni

_ (r) ¥, (r) - ¥y (0]
E 8 nn nl

W~
2?

2
Irl® (n-1) cov(&nl,énz)

-
IA

T e ot an - S W

g

% R T ]
58 nl
121 ni

n-1)(n-2

2 2
l -— L]
< lrl” (n-1) cov(anl.énz) + |r| 2 cov(énl.énz)
2 n-2
= ~1)
ir] cov(énl,énz)(n {1« > ]
_ n{n-1) 2 .
= 2 I COV(6n1‘°n2) (2.9.18)

The proof of (2.9.36) i3 complete by our inductive argument and

e X0 2 M R A

(2.9.31) follows from (2.9.38). O

E
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Our preparations so far in this section are adequate for the
purpose of establishing the Poisson convergence of N in the
independence case.

Theorem 2.9.1: Let T and U be independent random variables. Let

the number of correct matches, N, be given by (2.9.1). Then

N + Poisson (1), as n » = (2.9.39)

Proof: We obtaln from (2.9.13)

N3z,
= "n
n
where Z = § & .. Uusing the exchangeabllity of &  's, we obtain
n - ,o, Nt ni
2
cov(énl.énz) = P(Rll= 1.R12= 2) - [P(R11=1)] (2.9.40)
Since P(R11=1.R12=2) = 1/n(n-1), 1t follows that
nin-1) cov(d § ) = L vno>2
nl' n2’” n’ =
and therefore
- = - 2.9, 4
n{n-1) cov(énl.énz) 0(1) as n+ (2.9.41)

The proof of (2.9.39) consists of showlng that the characteristic
function of Zn converges to the characteristic function of the
Polsson distributlion with mean 1. 1In other words, we shall show that

'z (r) » expfexp(ir) - 1), vr € R as nio (2.9.42)
n

To this end, Lemma 2.9.4 gives the following estimate of the

&gz K2

B B B B 2 o= R
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=] |
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difference between the characteristic functicna in (2.9.49)
|?. (r) - exp(exp(ir) - 1)}
Z
n
n n
<y, (r) - ¥ (r)] + |¥ (r) - exp(exp{ir) - 1)|
YA 4 4
n nl nl
<D= 2 L8 8 )« ¥ (r) - explexp(ir) - 1))
2 nl’ n2 anl
(2.9.43)
Now, using the distribution of &,, glven by (2.9.21) we get
1
Y6 (r) = [1 + = (exp(ir) - 1}]
n
nl
Clearly,
'r: (r) » exp(exp(ir) - 1), Vr € R, as n + » (2.9.44)
nl

It readlly follows from (2.9.41), (2.9.43) and (2.9.44) that (2.9.42)

holds. Hence we obtain

d
zn 2 Polsson (1) (2.9.45)

which 1s equlvalent to (2.9.39). 0

We now assume that the broken random sample comes from a
population in which T and U are dependent random variables. It
should be noted that extensions of some of the techniques used in

the proof of the Polsson convergence in the independence case to the
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dependence case are not avallable at this time. Specifically, no

proof of the counterpart of (2.9.17), namely

2sE e

Kk
T v

and V are PQD Vv k =1,2, ..., n-1, Vo> 2
. 1=1 nn =

ni

(2.9.46)
¢
C Y is known. However, direct verification of the assoclation of
an. c e vnn has been carrled out for n=2,3,4 when T and U have the

Morgenstern distribution glvan by (2.6.16). Since association of

'*'\‘:| random var.iatl'es 1s a much stronger dependent structure than

(2.9.46), it is natural to conjeciur= that Lemma 2.9.1i holds even

e

:“‘\ when T and U are dependent. ;ﬁ

A o

!':1, In the absence of a valid proof of Lemma 2.9.1 in the depen-

BRr

‘ dence case, we need extra ccnditions on the distribution of T and U i

‘f‘ in order tec derive the Polsson convergence of N. The following lemma X

;:‘t' will be useful in deriving the main result of this section. fE

'.’-:«': .
. Lemma 2.9.5: For a fixed d, let L = ;ﬂ and L o= (L, ..., Ly, E

)

-;6::: 8, and [ are defined in Section 2.2. Then,

L) oy
-
L
e o

(A a.8

- - L, as n * (2.9.47)

i ~n ~ 5
b

:: Proof: Fix d > 1. It 13 clear from the definitions of gk in

3,
3:::?" (2.2 10) and the sigma-field Ay 1n Sectlon 2.2 that the infinite u
X sequence

183 .
Aty o

:, g'<1+1' §d+2’ Tyt

.
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of d-dimensional vectors are conditionally 1.1.d4 given Ad. Hence,
using the Strong Law of Large Numbers for exchangeable sequences

(Chow and Teicher, p. 223) we get

L5 g e, Ay (2.9
R .9.48)
n-a i 2a+1'Ma

;. o
s

In order to evaluate the limiting conditlonal expectation in

(2.9.48), note first that, for j = 1,2, ..., 4, TJ and UJ are

uniform random variables. Now,

|Tj=t U, = u,)

(%5001 30 Yy =Y

X B 558

0) - P(u, - U > 0)

=pv(t, - T 3 del

3 a+s1 2

E = P(Ty,; €ty - P(Ug, < uy)
‘ - t, - u,.
ﬁ 37 Y
- L,. (2.9.49)
J

Therefore, it follows from the definition of gd’] in (2.2.10) and

(2.9.4%)
. g% E(§d+1|Ad) = (“I'LZ' PN Ld) . (2.9.50)
@‘ Hence, (2.9.48) and (2.9.50) imply that
5 1 n a.s
X na ) §-k + L,asn- = (2.9.51)
f‘._) - K=d+1
g Also, d being a fixed lnteger, we have

S W T S A P R W
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1 d a.s
—5 L t,* Q.asn>e (2.9.52)
k=1
Since,
n
1
L o=~ 1
n n oo K
the lemma follows from (2.9.51) and (2.9.52) ]

The following sufficient conditions will be used to prove the next

theorem,

Assumptions: In the notations of Section 2.2, let

(a) N\ ¢« @ (2.9.%53)
(b) i IYL(e)I 40 < (2.9.98)
-
and  (c) P(¥3 < t) = 0(td) as t »w, ¥d>1 (2.9.9%)

Theorem 2.9.2: If Assumptions (2.9.53) to (2.9.55) hold, then

4
N + Poisson (\) as n » = (2.9.56)

Proof: Proof of (2.9.56) consists in showing that the factorial
moments of N converge to those of the Polsson distributlon with mean

A, in other words,

(4) q

E(N ) » 7, vd =1,2, . (2.9.57)

By the Fourler inversion theorem,

BB WEr = B

e

gx2 I

- |

AL )
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a u  J
P(S = 0) = (2%) J ... ] e, (0) de, (2.9.58)
~n -~ s~ -
-y -% ~Nn

where Ys () 1s the characterlstlic function of the d-dimensional
~n
random vector §n deflned in (2.2.7).
The Assumption (2.9.54) ensures that the Fourler inversion

theorem can be applled to the continuous random variable L. Noting

1
that A = §J c(x,x) dx is the value of the density functicn of L at 0,
0
we get
ot
& R
A= gL(O) = (2w) -l '!'L(t) dat
a
&
Since LJ =Ty - UJ. J =12, ..., d, are 1.1.d, with their common density
ﬁ function equal to gL(.) it follows that
By AT = (2v) f ... ¥, (8) ae (2.9.59)
.Y D -~
o8 ! Recalling the representation
\‘ -
% n
Wy N(e®) = } I
i=1 ni
;g from Corollary 2.6.1, we obtaln
v @), ()
A E(N ) = n P(AnlAn2 And)'
g -0 ps -0, (2.9.60)

o Xw A o AT AL AN BRSNS e air AN AE W A s A AN LS h‘u’h\;’hmmkﬁ'ﬁﬁ'
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where n(d) =nn-1) ... (n - 4 + 1).

For fixed 4, it 18 clear that n(d) ~ nd as n » ». It therefore

follows from (2.9.60) that, in orcder to prove (2.9.57), it i3

sufficient to show that

Lim |A(d,n)| = o, (2.9.61;
n+o
where a(d,u) = n'P(s_ = ) - A9

From (2.9.%8) and (2.9.59), we oubtain

a a ¥ K at? T
a(d,n) = n(2n) [ ... ] ¥ (wdu-(20) | ... | ¥ (8)a9
- - ~n ] —m o~
(2.9.62)
On making the change of varliables © = (nul, ces nud) in the
first term of (2.9.62) and noting that
¥, (8/n) = YL (8), we gec
~n ~n
4 nw n«w L ©
A(d,n) = (2w) | [ ¥ (8)de - [ ... [ ¥ (8)de
~nw -nw  ~Nn —c® —w  ~

(2.9.63)

For positlve constants a and 8, which will be determined

later, define four integrals as follows:

(1) 3 == ... ] ¥(8) ge (2.9.64)
lel>a ~
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(11) J(n) =] ... | [%, (8) - ¥ (8)]a6 {2.9.6%)
2 L "~ L~ ~

TIECR ~

(11}’ Ja(n) =1 ...}y (0)d0 (2.9.66)
L ‘'~
6 ~n

2

n—in
(v} J.tm) = ... [ ¥ ()8 (2.9.67)

Bngl@l<wvn =n

It 17 easy to verify using these integrals and (2.9.62) that

. 4
Ala,n) = (2008 3T g (2.9.68)
k=1 K

For appropriate cholices of o and B8, we will show that

|Jk(n)|* Oasn-*w, kK =1,2,3,4,

which willl imply (2.9.61).
Let ¢ > 0 be a filxed number. Then, assumption (2.9.53) and the
expression (2.9.59) imply that VL(g) is absolutely integrable

d

on R°. Therefore, we can find a large enough a such that

13,1 <1 ... ] ¥ (8)]de
i8l>a =

< ¢/ (2.9.69)
From Lemma 2.9.5, we have

a.s
-5
L L .

which implies that (cf. Bhattacharya and Ranga Rao, 1976, p.44)

Y, () > ¥ (0) as n » =
m L4

A .::'v

e

R
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94 g
the convergence being uniform on the compact subset i
d
(8:8€R"and |0| < a} g
Hence, for the a chosen above, we can find n1 such that
von, !
H,(m 1| < e/a (2.9.70) g
In order to show that |J3(n)l + ¢, we transform 8 to g
£ = 9/n in J, and obtain
) !
Jyn) = 0" [ ... [ ¥ (plar (2.9.71)
a | =n
"<|rg<8 §
n '~ ’
n
Note that §n = 3 §, 1s a lattice random vector so all its l
i=1
Iy
moments exist. Since (y,) are 1.1.d, it §
follows from the definition of 51 in (2.2.10) that
B(S) = 0 (2.9.72) I
It was arguad in the proof of Lemma 2.9.% that, for all n > d, g
£d+1' e En are conditionally i1.1.4 given Ad with mean E
E(EJIAd)zk,V:):(hx, c..y N a
It is easy to verify ihat the dispersion matrlces D(gled). g
J = d+1, ..., n, are positivz definite. Moreover, for .
=12, ... q, EJ 1s Jegenerate given I\(1 and

Y MEews
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where o° = var(T-U) and I is the dxa identity matrix.

| I DIL) = oI, (2.9.73)

The dlspersion matrix of §n is, for n > 4,

D(S) = DL I &)

1=1

]

n n
L{IOTE) IA)) « D(B( I 1A))
2 1 o1 £1'Mq

L]

(n-d) ED(E, . 1A + (n-0)°D(L)

oLl

R OER 5 B =R

We finally conclude that

22
D{S) - (n-4)"c"L = (n-a) ED(S, ,IN)
(2.9.73)

is positive definite.

As the second-order moments of §n exist, we expand ¥ .(r) around

. =n
_; r=0 and using (2.9.72) obtain
1 2
__ 1 9.7
log !§n(£) 2 E'D(S )t + ollic™), as licll + o0 (2.9.79)

In view of (2.9.73), we obtaln

5

2
lexp(logte (£1)1 < exp(- S8 GPyi? o oprll®y,
~Nn

. 4

§
r
!

as lirjl » ©
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Hence, there exists a constant 8 > 0 such that for n > d,
|!s (r)] < exp(- % (n-4)2 &% HEHZ).
-n
v "5" <8 (2.9.76)
Now, 3 n2 such that vV > nz. % < B S0 that we obtain using
(2.9.72) and (2.9.76)
1 2 2
|J3(n)| < nd | ... | exp(- "y (n-d)° o "5“2) dr
e
n <|r|<B
1 2 2
<} ... | exp(- s ° Iell®™) ac (2.9.77)
18] > o
It is clear that we can choose a large enough o in (2.9.77) such
that v n > nz.
|J3(n)l < c/4. (2.9.78)

Finally, to show that 'Ju| + 0, we transform u = 6/n in (2.9.67)
and obtain

d

1J,(m ] < n | ¥ (w1 du (2.9.79)

B<lul<w  ~n
In view of the earlier remarks about the conditional distributions

of | SRR, glven A, , we obtalin for n > 4,

d

< ¥ (wi| " (2.9.80)
2n fan ¥y --oo¥)

where §d+1 2 §d+1(!1' c ey !d) is the value of §d+1 given

N8 I 2 h e e

— - ,
e @ oee SERW CETN O S TEE B dme Bt B2

st &)




97

!1 = (Tl'ul)' i =1,2, ..., 4. Since the characteristic function

'{ (u) 18 uniformly continuous on the compact set
d+1
{u: 8 < |u}l < «) of RY, it attains its maximum inside this set, say
at u = u". Furthermore, YE heas period 2« so that, for almost
. d+1
;E all realizations (!1. vy !d)'

m u n - -,. L -

sup

k4 (Wl <1 {2.9.81)
B<lul<w 5d+1

m

Letting Wa = - Wnl¥Y (u®)l, we get from (2.9.79) and (2.9.80),

. tan
) a A
. IJ“| <n E (exp(—(n—d)?&) (2.9.82)
\-'4\. d
) =n « (n-a)
o H\'d
4 where
3
,:[ @ @ 4
K M(8) = ... | exp(-s¥*) Il QC(XJ'yj) (2.9.83)
4] 0

is the moment generating function of ¥* with a real positive

argument.

Now, using the Abelian Theorem (cf. Widder (1941), p. 181), we

. obtaln

. a P(¥3<t)

- Lim sup t "Y'(t) < Lim sup( rd r{d+1)1] (2.9.84)
¢ {4 tyo

By Assumption (2.9.9%), the right-hand slde of (2.9.84) 1s zero and

it follows that

: e EE EE B
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- q i
' n «(n-d} + 0, as n *» =,
. "y
: which implies, in view of (2.9.82), I
IJ“(n)I + 0, as n > «, (2.9.85) !

It follows from (2.9.69), (2.9.70), (2.9.78) and (2.9.85) that

e
3

Lim la(a,n)| =0

n-+w

The convergence of factorial moments in (2.9.57) follows immediately,

Caa
S

which in turn implies the Polsson convergence 1n (2.9.56) o
" The validity of Theorem 2.9.2 depends on whether the Assumptlons
o (2.9.53) to (2.9.55) hold or not. We shail now given some examples in

order to illustrate the fact that these Assumptions are not vacuous.

- =

We start with a discussion of (2.9.5%3).

i’\
“‘ .
fa

For any Copula C(x,y) on [0.1]2. one may define ¢2 (possibly an

infinite #) by the equation

) 1
K
ﬁ? ¢2+ 1 =]a ?x.y) dx dy, (2.9.86)

K where Q(x,y) = dC(x,y)/dxdy 1s the Radon-Nikodym derivative of the
Jonit distribution of (a) with respect to the product measure of T and
U (i.e., the independent case). C(x,y) 15 a ¢2—bounded distribution
(with marginal uniform distribution) 1if ¢2 < 4@,

The class of ¢2—bounded distributions is large, as 1s evident
" from the following general result (see Lancaster 1963, page 95).

v Proposition 2.9.3: If H(t,u) is a ¢2»bounded bivariate distribu-

i
B2 K = B BN K

i
i'«
e s e A ﬁéﬁ:-;f-’; daridy us-.wi.ﬂ._a-ixii%u ot e iy M 36 Yty BB P 0 2 0 . A -9’“9—3’&# - lbﬂp .
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tion with marginal distributions F(t) and G(u) then complete sets of

orthonormal functions "3 i1 =1,2, ..., can be defined on the

'"21'
marginal distributions such that

- » T -

daH(t,u) = [1 + 121 Py nn(t) nn(u)] dF(t) dG(u) (2.9.87)
. 2 o 2
and ¢ = ¥ Py (2.9.88)
i1=1

It may be recalled from (2.6.12) that, when all Py 2 0 in the above

e

canonlcal expansion of the joint distribution of T and U, we say T
and U are positive dependent by expansion (PDE). It follows from
(2.9.87) that, when a copula C(t,u) is ¢2—bounded, A in (2.9.53)
can be evaluated using the orthonormality of ["1} as

1
] e(x,x)dax

>
[

- o

(2.9.89)

a
[
+
n
R
(¥

It follows from (2.9.88) and (2.9.89) that the finiteness of ¢¢ and

A\ are related to each other. Specifically, since v i > 1,

S =5 S8 =9 2N

the canonical correlatlons Py < 1, we obtain

A< o3 ¢2< @

With regard to the Morgenstern distribution in (2.6.16), we obtain

T .
S

DO ELAN Al g 5 ) s WA It Gt /A T X L ¥ oy f ;'\-! ] PP AT '8 % 0. Y
RO S SRR T S e e e BT e :“"E- Li&i@&“ﬁ’ai%ﬁaﬂht‘-‘&‘i ekt L\ Selalelsd, .ga-dp-\‘- e Rt -‘A o ‘é:“.*ﬁ-ggﬁa"ia’ii"‘
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0 if 1>1

where -1<a<l. However, we have

1
J ctx,x)dx

>
"

H

-t

+
w9

which i3 finlite. Similarly, in the bivariate normal distribution

given by (2.6.15),

i A= ?t; y 0 < p<l

s In view of these examples, assumption (2.9.53) is not vacuous.

Yea

N

A Bhattacharya and Ranga Rao (1976) (pp. 189-192), glves conditions

that are equivalent to the assumption (2.9.54). We cite one here:

-
; Let GLm denote the nth convolution of the distribution of
‘(

& -
ﬁi’ L-T-U, wherem > 1. If there exists an integer m such that GLm
Cy

S has a bounded (almost everywhere) density, then the modulus of the
-::' characteristlc function of L is integrable on (-=,»)(that 1s

agssumption (2.4.54) is valld) and vice versa.
‘. Another sufficlient condition for absolute integrability of

;gﬁ YL(G) is due to Bochner and Chandrasekar (1949). If there exists

4y a bounded (almost everywhere density gL(t) of L=T-U and 1f its

characteristiz function vL(e) is (real) and nonnegatlve, then

*‘:.
s

0

+
-
»
="

-
~—
-

£l ]

A1

e

A SR Y R ST A Ve P e W o AR AR BAD O
R -i‘.f—‘*z-‘a“r:n;aSaéawc‘iirs-i‘iht@ﬁ:ﬁmam;u;nskﬁé&:'sgigiiﬁiﬁ!ﬂﬁ:ﬁﬁ; Tr-‘-‘:l:l".'=~ iy

N Tl v

" a0
B R R A el L A

‘n o~

2

)
!




101

| |!L(O)| 40 < » ,
dlilp

P

Ve 1llustrate the use of this sufficient (but not a necessary)

condition when (6) has the Morgenstern PDF,

N Cix,¥y) =1 +a (1 - 2x)(1 - 2y) ,

o
»

>

g C Clearly, as la]l <1, Ix] <1, iyl <1, 3 a positive constant k

such that

w e

c(x,¥) < k, ¥V (x,¥) ¢[0,1]2

Note that

1-t
A B (L) = [ z(tsy,y)ay, vt > 0
i y=0

[,
. -

T e -

ol

By the symmetry of C(x,y) in and, 1t can be shown that

grLi~t) = gp(t), vt > 0.

-

Now, using the bound k for C(x,y), and the fact that (-1,1) is

the support of L, we get

o

1-t
(t) <k | dy<c2k<=
gL 0

Hence, it follows that the PDF of L 1s (almost everywhere) bounded.

We now show that YL(O) is real and nonnegative V a > 0

v (©) - gelTVe _ 1 a1

i(x-y)e
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with z ax

[ e 1xo0

o

1(x-y)e

e (1-2x) (1-2y)dxdy

[
~N

)
O vy poo
Q) v

1
with 2_=1] e (1-2x)dx
Q

Hence, ¥, (8) = 12,(0)1% + a]2,(0)1% > 0 4f a > 0.

Invoking Bochner‘s sufficient condition, we get | le(s)lde < @,
L -J

Af « » 0, dowever, for all a,

| ItL(eylde = | |zl(e)| 40 + o | 1z, (0|
.. . ] -0 -0

(2.9.90)

$0 that the two iniegrals on the right hand side must be finite when

-
a>0. It follows that, even when o < 0, | |¢L(e)|de < . We con-

Clude that (2.9.54) 13 valid for any membe:mof the Morgenstern family
of densities. It may be remarked, in passing, that, in view of the
generality of the conditions of Bhattacharya and Ranga Rao (1976) and
Bochner and Chandrasekar (1949). (2.9.54) holds for many dlstribu-

tions of (5).
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when d=1, one can get the bound

' Lastly, we discuss the valldity of (2.9.%%). To be specific,
| 2 ,
! Ivgz(w,ml <1 - py(1-p,) + 8In°(B/2) VB < 6 < v, W = (y)

where P, = po(g) =1-x-y+ 2C(x,y)

Therefore,
§ X 11 2
. lJ (n's)' < ' I ne (n-1)4sin B[Po(l-—Po)] dxdy.
. 4
_ i 00
‘ Thus, J“ * 0asn +* o if we show that anou_po)(n ) * 0 as
. Eg n * ®, wyhere H"(s) is the Laplace transform of n. A sufficient
]
: ﬁ condition for this to happen is

P(PO(I—PO) <t) =0(t), as t + 0 (2.9.91)

Let 8(t) and 1-4(t) be the roots of the equation

' PO(I—PO) =t
irjs It suffices to show, as t =+ O,
F’(Po < 4(t)) = 0(t) and (2.9.92)
P(Po > 1 - 4(r)) = 0o(v) (2.9.93)

1f (5) 1s independent, then the PDF of P_ can be shown to be

gp (x) = -tn(]1-2x!)I(x)

g o (0,11

e L T
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, e So that (2.9.92) and (2.9.93) are valid when C(x,y) = C_ where

R CO(x.y) = Xy. Also, if C(x,y) > xy, then PO(C) > Po(co) so that

. F(P_(C) < 8(1)) <

P(PO(CO) < 4(v)) (2.9.93)

Thus, using the exact calculations based on the independence case,

it follows that

¥ C > xy, P(PO(C) < &(t)) = o(v)

"?f At this time, we are optimistically speculating that, when (5) are
dependent, (2.9.93) 13 also true. We are yet to demonstrate that I
the agsumption (2.9.5%) 1s not vacuous for any d > 1.

After we derived the proof of Theorem 2.9.2, we discussed the

Polsson convergence protlem with Professor Persl Diaconis, who

commurniicated the problem to Professor Charles Stein. In his Neyman
‘f_ lecture at the IMS Annual (1984) meetling, Professor Stein outlined

. an alternative proof of the Polsson convergence using his well-known

1
-

theorem concerning the approximation of probabilities. However, we

. have not seen any rigorous version of the proof yet.
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3. MERGING FILES OF DATA UN SIMILAR INDIVIDUALS

Problems of statistical matching were discussed in Chapter 2,
where we assumed¢ that the two micro-data files being matched consis-.
ted of the same individuals. Moreover, the files did not have any
common matching variables. In Chapter 1, practical and legal reasons
were clted for these assumptlons not to hold in certaln situations.
Suppose, then, we have two files of data that pertain to similar
individuals. Allowing for snme matching variables to be observed
for each unit in tne two flles, we seek to merge the files so that
inference problems relating to the variables not present in the same
file can be addressed. This gcenarlo was labeled Case III in
Section 1. In thils chapter,we shall first review the existling
literature on Case III, and then briefly discuss some alternatlves
to matching in certain models in which the non-matching variables
are conditionally independent given the values of the matching
variables. Finally, we will present the results of a Monte-Carlo
study carried out to evaluate certaln matching procedures relevant

to Case III.
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3.1 Kadane's Matching Strategies for

Multivariate Normal Models

Distance-based matching strategles were introduced in Section
1.5. The cholce of distance measures in the matching methodology can
be motivated using a model where the unobserved triplet W= (X,Y,2)
has a multlvariate normal distribution. The set-up of the two files
o be merged is as follows:

File 1 comprises a random sample of size n1 on (X,2), while File
2 consists of a random sample of size n, on (Y.Z). Furthermore, we
expect very few or no records in the two files to correspond to the
same individuals. Stztlstlcally, this means that, for all practical

purposes, the two random samples are themselves independent. For

this reason, we shall denote the sample data as follows.

(Base) Flle 1: (X,02,)0 1 =1,2, ...,

1
(3.1.1)

(Supplementary) File 2: (gj.gj). J = n1+1. seev DpeN,

Once finished, the matching process leads to more comprehensive

synthetlc files, namely

Synthetic File 1: (51.2‘

12

1). i=1,2, ..., n

(3.1.2)

Synthetic File 2: (53'13'53)' J =n,+41, ..., n_+n

where, !; 1s an imputed value of Y that comes from the original File

2 and X% 1s an imputed value of X that ls taken from the original

J

File 1 by means of some matching strategy. We shall now review
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Kadane (1978)'s development of the matching methodology for a multl-
variate normal model.

Suppose that ¥ = (X,Y,Z) has a multivariate normal distribution

with mean vector (gx.gy.gz) and variance-covariance matrix

zxx zxy sz
I = 2“ Zyy Zyz (3.1.3)
zzx 2zy zzz

The parameters Zxx.ixz.iyy.iyz.zzz can all be estimated consis-
tently using the marginal information on (X,Z) and (Y,Z) respectively
in the two files. However, ny is an unidentifled parameter, because

the joint likellhood of the data on (X,Z) and (Y,Z) 1is free of the

matrix Exy’ In fact, in the domain in which Zx’ is such that the
matrix zxx zxy is positive semldefinlte, nothing 1s learned
zyx xvv

from the data about ny. except in a Bayeslan framework, where zxy-
zxz‘zyz are, a prlorl, dependent. Even 1n this situation, the
posterior distribuion of ny is updated only through sz and iyz.
Kadane's approach to merging File 1 and Flle 2 consists of the
following steps:
(1) Start with an imputed value of zxy via some a priori distribu-
tion on the covarlance matrix }, (i1) Complete Files 1 and 2 by
predicting the missing data, X or Y, using the marginal informatlon

in the files, (111) Match these *“completed" files based on a
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dlstance measure between records of the two files, (iv) Estimate
parameters such as

= [ g(w) dF(w} , (3.1.4)

using the synthetlc flle resulting from Step (111) and repeating the
Steps (11) through (iv) many times to find the sensitlvity of the
estimates to the imputed value of Zx and finally weight the results
using the a priori distribution on }.

Some further detalls of the steps outlined above are as follows:

Suppose that a an imputed value of va is avallable. Then we can
agsume that Exy 18 known and complete the two flles by means of condi-
tional expectatlions. Let zab.c' for any letters a, b and ¢, be given

by

-1
zab.c = zab - 2ac zcc zcb
Then the predicted value i. say, of a missing Y in File 1 138 given by

¥ - E(X1IX,2)

1}

By * ny.z Exx.z (X-p,) + Xyz X zzz x (Z-E,) (3.1.5)

Similarly, the predicted value, g. say, of a missing X in File 2 1is

glven by
X = E(X|Y.2)

-1 1
Xy.z Zyy,z b ) + ny y Zzz y (Z-p,) (3.1.6)

n
xl':
+

™

Using (3.1.3), (3.1.%) and (3.1.6), it i3 now easy to show that
~1'~1'Zi) i1s multivariate normal with mean vector (Ex’ﬁy’nz) and

variance-covariance matrix

ALY
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Lex A ez
=1 M Ay A (3.1.7)
Lox Ay iz
where A, =} Z-l 2., + 1 Z’l )
17 fyxoz fxxez fxx T fyzax fazx fax
Ay = Ty z;;.z zxy.z + 1z z;;.x Zz.v.x
and
Ay - ny.z E;i.z Lyx z;:.z zxy.z
* Lyp Z;:.x 2 z;;.x Loy x
* 22yx.z z;i.z ez Z;:.x Zzy.x
Also, the vectors (33.33.33). 3 = n;+1, ..., n;+n,, have a common

multivariate normal distribution with mean vector (nx.gy.gz) and

variance-covariance matrix

L L]
A l\5 A

4 6
Q = A iyy zyz (3.1.8)
A6 zzy zzz
where A, =) E‘l ) 2_1 )
4 Xy.z "yy.z “yy "yy.z "yx.2a
N WD FURD S S
xz.y “zz.y “zz “zz.y “zx.y¥

-1 -1
* 2):xy.z Zyy.z 2yz Ezz.y zzx.y
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-1 -1
Ay = zyy zyy.z zyx.z * zyz Zzz.y zzx.y

and

Mg = Tpy Sow o 8o oo+ 50 IL )

2y “yy.z “yx.z z2 “1z.y “zx.y

NHote that the distributlons given by (3.1.7) and (3.1.8) are singular

because the predicted values il and gJ+n are linear functions of the

.1 -
other components of the random vectors I, = (X,.¥,,2,) and
o

) respectively, where { = 1,2, ., n, and

1
=112, ..., n,. In order to describe Kadane's procedures to match

= (X, WX, .2
J ~3+n1 J+n1 J@ﬂl

the completed File 1, namely, T, ..., I with the completed File 2,
. . 1
namely, gl. ey gn » let us first assume, for simplicity, that
1

n1=n2=n. Starting with n records in each flle, we will compute the

differences
X - gj+n
I, - QJ =1y - Yin| + 1€t 3 2n (3.1.9)
Ei B z',j+n

in order to define a measure of dissimilarity between any pair of

records, one each from the two completed files. Suppose first that,

there exists a vector of constants & = (11, ceey ln)', say, and i and
J such that
P(L (I, - QJ) =0) = 1. (3.1.10)
In view of the lndependence of the random vectors ii and QJ' it 1s clear

P

a

oy
.t
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that (3.1.10) cannot hold. Consequently, any of the vectors i - Q
is free of any linear relatlonshlp among its components. It follows

from this fact and (3.1.7) to (3.1.9) that the differences I, - 0,

1l <1, ) < n are ldentically distributed, sach with a nonsingluar
multivariate normal ristribution with mean 0 and varlance-covarlance

matrix 91 + 92. For any positlve definite matrix A, a dissimi-

larity measure between i and Q can be defined by the quadratic

i 3

form

ay4(A) = (T, - G)'ACT, - 0. (3.1.11)

Also, d44(A) will be referred to as the distance between the ith record

of File 1 and the Jth record of File 2. Various cholces of A in
(3.1.11) provide different distance measures.
It may be recalled from Section 1.5 that a constrained matching

of the two flles is obtained by minimizing

n n
c=35 ¥ d,,a (3.1.12)
121 g1 WU

subject to the conditlons

n
I a =1, vi=1,2, ..., n (3.1.13)
1)
j=1
n
3 By, = 1, v)=1,2, ..., n (3.1.14)
J
1=1
and
u13 =0or 1, v 1 and j (3.1.15)
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If the dij’s in (3.1.12) are glven by dij(A)'s in (3.1.11) for some
cholce of A, then we obtaln an optimal distance-based constralned
match. Note that this type of matching of the two files amounts to
Solvlng a llnear asslgnment problem. Sometimes, an optimal matching
may be obtained by minimizing (3.1.12) wlthout requiring that the
conditlions (3.1.13) and (3.1.14) hold. However, as reported in
Rodgers (1984), unconstrained optimal matches do not provide good
estimates of the distribution W = (X,Y,Z). We shall not discuss

~

such "unconstrained matchings."

It 1s important to note that the aforementioned optimizatlion
problem needs to be solved for each realizatlon of the random
variables involved. Suppose then that ii and QJ have been matched
in a glven problem. Then it might be natural to take (!1.23.51) and
(51'!3'53) as simulations of the underlylng distribution. Now, the
parameter y in (3.1.4) can be estimated using one of the followiag

synthetlic samples:

Synthetic File 1: (gi,z;.gi). 1 =12, ..., n. (3.1.16)
Synthetic Flle 2: (53.!3.§3). J =n+d, ..., 2n. (3.1.17)

where !; and 53 are values given by the matching procedure.

Kadane has suggested that matchings based on a fixed A in
(3.1.11) and the consequent inferences based on synthetic files such
as (3.1.16) or (3.1.17) must be repeated many times and the results
must be averaged ln some sensible way in order to explore the sensi-

tivity of our findings to the value of zxy we started with. We shall
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A
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not pursue such issues as the actual cholce of a prior on } and the

aforementioned sensitivity studies of inferences based on synthetic

R

data. However, we shall now discuss Kadane's choices of the matrix

n e mm o
e omE e W D
"o

A, which will be used in our Monte-Carlo Study of Sectlon 3.3.

"

o Kadane has advocated two cholces for the matrix A in the defini-

tlon of distance measure dij' which is given by (3.1.11):

-
B
=

-1
(1) A=(a +2,) ", (3.1.18)

where Q) and Q; are the matrices in (3.1.7) and (3.1.8); this A leads
to the so-called Mahalanobis distance between the records of the two

-
-

N files, and

N 0 ] o

. ;-‘f".

o (1)) A =} O 0 0 , (3.1.19)

e

'l;f\ . _1 ]
Wt 0 N zzz h

In general, the relative benefits of these two distance measures
1s an open question, although the emplrical studies of Barr et al.
(1982) and other lnvestigators reported in Rodgers (1984) indicate
that the Mahalanobis distance is worse than the distance provided by
(3.1.19) in the sense of distorting the blvariate and multivariate
relationships among the variables X, Y and Z. In view of this, we
shall follow Kadane (1978) in calling the measure induced by (3.1.19)
the "bias-advolding distance function.” The special case of (3.1.19)
when Z has only one component will be discussed in the next

subsection.

g
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3.1.1 Isotonlc Matching Strategy

We shall evaluate, 1in Sectlon 3.3, Kadane's matchlng strategies
in the simple case when the triple W = (X,Y,Z) has a trivariate
normal distributlon. In order to facilitate such evaluations, we
now show that, 1n the speclal case of a scalar Z, ths matching
strategy based on (3.1.19) can be lmplemented without using any
algorithm to minimize distances.

Assuming that Z is scalar and using (3.1.19) in the objective

function given by (3.1.12), C is equivalent to

a
"

[ o =]
™~
-—

N
1
N

w

13 (3.1.20)

1=1 j=1

In a constralined match, ajj's are subject to the conditions (3.1.13)

to (3.1.19). Thus, (3.1.20) further simplifies to

n 2 n 2 n n
cC= 31 2 + Y 2 -2 i I Z..Z2_.a

a4 1-1 31 A
Hence, the minimization of dilstances reduces to maximizing

n

Yy a,.2 .2
p gop W2

(3.1.21)

9]
H
uw ™~ 2

1

subject to the conditions (3.1.13) to (3.1.15) on the ajyj's.

DeGroot and Goel (1976) show that, given the numbers zli's and

i's. the constralned maximization of C' ls equlvalent to maximizing

) Z11%2601)

i
1,2, ..., n. However, thls latter extremal problem was encountered

%,
n
Y over all permutations ¢ of the integers

- "
5 e o
N
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in Section 2.4 when we derived the ﬁ.L.P " for certain blvarilate
matching problems. It follows that, with regard to Kadane's distance
measure given by (3.1.19), where Z 1s scalar, the optimal matching
strategy 1s to order the Z-values in the two files separately and
then match the 1‘" largest Z 'n Fille 1 with the lth largest Z 1in
Flle 2. Thils expllcit solution means that, if Kadane's matrix in
equation (3.1.19) 1s used to minimize distances between records of
the two files, then the synthetic File 1 is obtained by matching the
the X-concomitant of the 1*" order-statistic among Z's in Flle 1 with
the Y-concomitant of the 1th order statistic amont Z's in File 2.

We shall refer to this strategy as isotonic matching of the two files

because the matching procedure ls determined by the order-statistics

of the Z's in File 1 and the order-statistics of the 2's in File 2.

3.1.2 Sims' Matching Strategy

In the preceding subsection, 1t was shown that one of Kadane's
matching strategies can be simplified to the point of not using any
optimlization algorithm in the matching procedure. Such simplifica-
tion is clearly not possible when the triple (X,Y,Z) has a multl-
dimensional Z . The whole 1dea of generating very large synthetic
data sets by actually minimizing a sum of distances over all
potential matches seems computationally profligate. One possible
alternative to distance-based strategies, which was suggested by

Sims (1978), will now be outlined.

143
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Sims has stressed the lmportance of exploiting the local sparse-
i ness or denseness of the sample data on the matching variables Z. A

" dense region of the Z-space 1s one within which we expect that the

L WR a2 S

distributions of X and Y given Z change little. It 1s, at the same

=i

time, a reglon within which we have many observations. Sims has sug-
i gested that, within a dense region, any arbitrary matching procedure
will produce results that do not distort the jolnt distributlion of

;? X, Y and Z. Reglons which are not dense have few observations and,

BB &

N within them, statlstical matching becomes difficult. Sims felt that
} in a sparse region, statistical matchings wlll almost certalnly }

K distort the joint distributlion of X, Y and Z. He suggested that, in

[LFTs

lé such a reglon, we should elther not match at all or go beyond

matching to more elaborate methods of generating synthetlc data.

y However, Sims d1d not spell out any specific alternative to matching

,.
-
-~
oo

ﬁ within sparse Z-reglons.

o

-

In our Monte-Carlo Study for comparing Kadane's strategles with
‘o Sim's, which will be presented in Sectlon 3.3, we created ten bins
W in the Z-space, namely (-w,-1.00), (-1.00,-0.75], (-0.75,-0.50],
*
1

! (-0.%0,-0.25), (-0.25,0.00), (0.00,0.25%3, (0.25,0.501, (0.50,0.75],

3 B IR

¥, (0.75,1.00]1, (1.00,+»). The conditlonal mean of X or ¥, given Z did

’ q

iy

N not change much inside the elght bins which were between -1.00 n
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and 1.00. Hence, these latter bins were considered dense bins and
the two bins in the left and right tall of the distribution of Z were
considered sparse bins. Within each dense bin, we randomly matched
records of the two files, whereas the isotonic matching strategy of -

Subsection 3.1.1 was used in the sparse bins. \

3.2 Alternatives to Statistical Matching

Under Conditional Independence -

Several criticlsms of the matching methodology were mentioned in
Section 1.6, It was observed that the formation of packets on the
basis of matching varlables Z and the merging of records within each
packet imply that the non-matching variables X and Y are condition- ;
ally independent given the values of Z. Following A. P. Dawid (1979)
we shall use the notation X || Y | Z to denote the conditicnal indepen-
dence among the variables X, Y and Z.

Consider the slituation in which we match the fragmentary data ';
provided by the flles in (3.1.1). It may be recalled from Section
1.2 that any statistical model for this type of matching should imply
that the data in File 1 is stochastically independent of the data in
File 2. Clearly, such flles of data cannot be used to statistically
test the validity of the implicit assumptlion that X jj Y | Z. Further- g
more, Sims (1978) has observed that matching itself for the purpose
of, among others, estimating v in (3.1.4) is unnecessary. He pcintad

out that, when X || Y | Z holds, one can write

- s

DY ) L 4N
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Xz Xz z
ar(w) = dF (w) aF  (w)/dF (W), (3.2.1)

»

where F77(.) is the marginal (with regard to W) CDF of X and Z and

the other terms on the right-hand side of (3.2.1) are analogously

dafined marginal distributlon functiona. The two separate samples in

(3.1.1) are adequate to estimate all the terms on the righi-hand side

of (3.2.1) by any of a number cof statistical metliods. In thls sec-

tion, we willl discuss scme alternatives to matching. With emphasis

on estimating the covarlances or correlatlions between X and Y, we

shall first review a histogram-type alternative which was suggested

by Sims (1978).

Suppose that we form a grid in the W space and estimate the

Joint density of

each

cell of the

Y-categories and

sample polnts 1In

define counts of

Thus,

and

we have
nl.k = the
and
n.Jk = the
and
n"k = the

W by first counting the number of sample points in

z grid. Let 1 index X-categories, ) index
k index Z-categories. Let Mk be the number of
the (1,),k)'D cell and use the dot notation to

sample points with regard to marginal distributions.

number of sample polints with X 1in the 1th category

th
Z in the k  category,

) th
number of sample points with Y in the ] category

2 in the kth category,

th
number of sample points with Z in the k category.

0y
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Clearly,

n k= E Mk = LD

and the data in the two files given by {(3.1.1) can be used to compute

n n and n K for all pcssible values of i, J and x. Thus,

1.k ik

n1 K ic obtained from File 1, n 3k from Flle 2 and n K from the two

files together. Finally, for a known function, g(.), say, let g(!ijk)

denote the value of g computed at the center, of the (i.j.k?h

% 3k
cell of the grid that we started with. Sims has suggestad that we

could estimate vy in (3.1.4) by the statistic

n n
Il Lok —.dk (3.2.2)
1,3,k "

With regard to ; in (3.2.2), theoretical properties such as the
asymptotic distributlion of ; (as the sample size tends to =) are
unknown at the present time. Also, practical problems such as the
cholce of W-grid and the cells thereof, which would keep the number
of terms in the sum (3.2.2) computationally reasonable, have not becen
studied yet.

Sims (1978) stated that a procedure like the one leading to ;
in (3.2.2), which takes into account the impliclt assumptlion of con-
ditional independence of the matching methodology, had the following

advantages over matching to create a synthetic fille such as (3.1.16):

{(a) the procedure lends itself to computation of standard errors

indicating the rellablility of computations based on it
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(b) the procedure can be connected to the large statlstical litera-
ture on estimating density functions and multi-dimensional

contingency tables, and

(¢) 1t 1s likely to provide more accurate results than matching.

Glven the lack of work on the statistical properties of the alterna-
tives to matching, we can agree with the advantages (a) and (b), but

regard (c) as an undemonstrated speculation. We shall not discuss

} in (3.2.2) any further. Nor shall we elaborate the merits and
demerits of alternatlves to matching and synthetic-data-based pro- 14
cedures. Nevertheless, in the next subsection, we shall derive the

estimators of parameters for conditionally independent normal modelsg

without matching the files in (3.1.1).

3.2.1 Maximum Likelihood Estimation in Multivariate Normal Models

Using Two Flles of Data

Consider the random vectors X, Y and Z, with respective dimen-

sions Py» Py and Py- Suppose that W = (X,Y,Z) has a nonsingular i
multivariate normal distribution with unknown mean vector ﬁ
- i & matrl , which is

(Ex'ky'xz) and unknown varlance-covariance x 3

partitioned as in (3.1.3). Suppose that the sample data in (3.1.1) Eg
. , in vi f the

is available and that n12p1+p3, n23p2+p3 Note that n ew o E

nonsingularity of distribution of W and the fact that ég

Z.y ... 2 are stochastically independent, the ranks of the ;ﬁ

~1 ~n1+n2 r;

matrices (Zl. ce ey Zn1) and (an*l' R Zn2+n2) are equal to P3 for

almost every realization of the 2's.

e
v
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In this section, we shall find the maxim.im likelihood estimator
of , among others, the covarlances among the varlables in the vectors
X and Y, without matching the files (3.1.1) but essuming that
XliY|Z. The maximum likellhood estimation of parameters in
multivariate normal models based on various patterns of missing data
has been discussed in the literature. See, for example, Eaton and
Kariya (1983) Kariya et al. (1983), Anderson (1984) and Srivastava
and Khatri (1979). However, the pattern of data glven by the set-up
(3.1.1) does not seem to have been examined. Note first that, under

conditional independence, the density of w can be written as

(x1z.0)f,(y1z,8) (3.2.3)

where © = (Hx’Ey'Hz'Exx'zxy'zxz'zyy'xzz) (3.2.4)

and fu(g) is the joint density of W given by

~{py+po+p3)/2 _ -%
£,08) = (20) 2 M

x etrl- 3 I W - i  p)°l, (3.2.5)

etr belng the exponential of the trace of a matrix. Also, fl(.) is
the marginal density functon of Z, PZ(.) and f3(.) are respectively
the conditlonal densitles of X and Y, given Z = z. It is well-known

(Anderson, 1984, p. 33 and 37) that fl, f. and f3 also correspond to

2

certain multivarlate normal densities like (3.2.5). Using the Joint

ncrmality of X, Y and Z, it is easy to verify that (3.2.3) holds iff

t J A% LAY AL '- Ay '\ -V!-ﬁ,;i\ N AN 1,, pe Tk
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5. =31_ 3ty (3.2.6)
Xy xz “zz “zy e
It follows from (3.2.3) that the likelihood of the observed
data in the two filles glven by (3.1.1) is
L(0) = LI(Q)LZ(Q)La(g) R (3.2.7)
n1+n2
where Ll(g) = n fl(gi.g) (3.2.8)
i=1
n
Lz(e) = I fz(xilgi.g) (3.2.9)
1=1
and
n1+n2
L,(@) = m £,(y,12,,8) (3.2.10)
1=n;+1

Taking natural logarithms of both sides cf the equation (3.2.7), we

obtalin

~

3
@ = I (e, (3.2.11)

where 20(6) = IOEe(Lo(e))' Va=1,2,3
Let Z and 5, denote respectlively the mean and the matrix of

corrected sums of squares and products of the data 51. ey En en. "
2

1
That 1is,
ny+n
1 1+h2
Z = n,+n ) zl
1 2 1i=1

(3.2.12)
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l n1+n2

LIY —_— had
s = 3 (z, - Z)(z, - Z)°'

, -~ ~ — -~
S gi * i !
" Similarly, let ?1 (Z,) and s,(s,) be the mean and the matrix of
'( I corrected sums of squares and products of the data Zyy e Zn
. 1

o (Zn «1' " Znoun ). Let, for any lower-case a, b and c, and any
: . vector Z,
4: E!
P
L ~1

Ba,plZ) = 2y * Iy Ipp (2 - kp)

-1
zab.c = zab - ch 2cc Zcb (3.2.13)

ey
e R

Then using the notatlons in (3.2.12) and (3.2.13), the equations

-
"

(3.2.9), (3.2.7) to (3.2.10) and Theorem 2.5.1 of Anderson (1984)

(for the expressions defining fa and f3) we obtailn

&5

' ny+n»
11(9) - 2 loglzzzl

-1

tr(- 3 550 U8, + (n1+ng)(Z - p ) (F - g,)'1) (3.2.14)

M
(@) = - 7 o8l . |

n
1 (-1
tri- 5 zxx.z[lzl (X - By (ZXy - gy ,(Z0)])

| -
-
L3
+

[ R

(3.2.19)

and

R R AN O o
22 Mgl BN Al
>
N
n +
R BEl e | O eN  RF

L,(8)
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np+ny
11 - _ .
v tef- 5 Zyy.z[3=51+1 (13 Ey.z(gj))(lj gy.z(zj)) 1}
(3.2.16)

Note that in (3.2.14) to (3.2.16), certaln constant terms have been
omitted.

It 1s clear from (3.2.7) and (3.2.11) that the M.L.E of © is
obtained by maximizing lc(g) over 6 for each a = 1,2,3 separately.
Moreover, this maximization 13 easler If we reparametrize the distri-

butlon of W by means of

n i B

2= (Ez'zzz'gxy'xyz'zxx.z’ yy.z' xy'Byz)' (3.2.17)

where, apart from the notations that we have already introduced, we

have, for any letters a and b

-1
ab zab ):bb

and (3.2.18)

Yab ~ ¥a ~ Pap Ep

It can be easily shown that there ils a one-to-one correspondence
between 6 and n. Consequently, if we rewrite la(g)'s in terms of n,
then maximizing L(@) over € 1s equlivalent to maximizing lu(g) over n,
for each a = 1,2,3. The advantage of the transformation to the
n-space 1is that la(n)'s are functlons of disjolnt portions of n.

In fact, 11(5) is the same as il(g). whereas it follows from (3.2.19%)

to (3.2.18, that

s E BES

™
5

—
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Bl 2= O =2 N
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12%
m
() = - 37 1ogll,,
m
v trl- 3 zxx z 151 (%) = 2z " Byz 200Xy " g " Byp )1
l (3.2.19)
i' and
. n2
1) = - 3% logll |
1l c-1 nlgnz }
+ tr{- { (Y4 - »,. ~B _Z )y, -v,_-B _2.)')
27z a9 YR ¥E TR vz vz )
(3.2.20)

In view of Theorem 8.2.1 of Anderson (1984}, it can be easily
shown using (3.2.14), (3.2.19) and (3.2.20) that M.L.E of n is

given by

B, = 2

Y R e S

zZ

]
)
4
=
[
+
=
n

i n
. . o

By = L2 (X - X2y - IS

1=1

v =X-B_12

~Xy -~ xz ~1

. ny+np 1

=0 1 (Y, - )(z, - Z,)'1s, (3.2.21)
yz J=nyel J J 2 2
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A
Yz = ¥ -8By I,
1 b
Yex.z ° EI 151 Xy = By~ Byg 20Ky - By m By By
1 n1+n2
) == I (X, - v, B Z)(¥, - v -8B 2.
Y2 Ny yanper Y ¥E vE TR Syz oy )
Using these estimators and the relationships between € and n we
obtain the M.L.E of 6 by means of the following equations.
By = ¥xz * sz By
By = yu * Byg ¥y
™~
B, = 2
5 =B § B* ) 3.2.22)
Zxx XZ zzz sz * Zxx.z (
zxz= XZEZZ
zyy = Pyz Ezz Byz * Zyy.z
Zyz = yz Xzz
ana § -1 §°b3F
Xy xz “zz “zy
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It follows from the above discussion that if we can Jjustify the
assumption that X |l Y | 2, then we can avold matching the flles in

{(3.1.1) and estimate, among other parameters, ny. by means of the

equations in (3.2.22). Unfortunately, the two data flles contain no
information regarding the appropriateness of this assumpticn, and
prior information from other sources must be considered. The point
here is that, if the matching methodology 13 based on assumptlions
like X 1] Y | Z, then we must look for alternatives to matching whose
statistlcal properties are known. Such alternatives are useful
especially because very little is known about the reliatility of
synthetlc data-files.

It is important to note that (3.2.6) 1s a necessary condition
even if W is not normal, provided only that X Il Y | Z holds and that
the appropriate moments of the distributlon of W exist., Hence, we
can use the estimator ixy in (3.2.22) even for non-normal popula-
tions. We now show that ixy is consistent for ixy without assumlng

that W has a multi-variate normal distributlon.

Theorem 3.2.1 Suppose the joint distribution of W is such that its

second- order moments exist and that the dispersion matrix, I, of W is

partitioned as in (3.1.3). If X |l ¥ | 2

—~

then ixy' given by

(3.2.22), is strongly consistent for ny.
Proof: We first note that ixz and izy are stochastlcally independent
because they are functions of the independent data in File 1 and

file 2 respectlively. However, i_z involves Zi's in both files so

that the elements of the vector

. ————— . A N W u S _ AR EEER P~ g K - Y X R W= o
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Iz02zy) (3.2.23)

(% y

xz'“zz'

are dependent. The almost sure convergence of the vector in (3.2.23)
will follow from the almost sure convergence of §__,¥ .3

xz'“zz'“z2y
individually (cf. Serfling, 1980, p. 52). 1In view of the similar-

itles of the proofs of the convergence of these matrices, we shall

= B & B

only show that, as nQ + o a=1,2,

a.s &

izz + 1, (3.2.24) i

We obtaln from (3.2.21), e

ni+nsz
T oz, Iy -2 (3.2.25)

S5

[ d
13

Recalling our assumptlon that the files in (3.1.1) are independent

random samples and that the vector Z has a finite dispersion matrix,

=2

it readily follows that the Strong Law of large numbers (cf.

’

serfling, p. 27) applies to independent sequences {51] and {gigi}.

Hence, we obtaln, as n_ » ™

@
o -

n1+n2
S ¥ Zl Zi + E(Z 2') (3.2.26)
MM 1A
and 53
a.s
Z + E(Z) (3.2.27)

L

It follows from (3.2.2%) to (3.2.27) that

2k

<

1>
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We conclude from our remarks earlier in this proof that, na * >

(szoz i y (3

22" L2y xz.z Xz ) (3.2.28)

zz'“zy

Let us now observe that

a=1 =
zzz zzy

IR

xy Xz

is a continuous function of the random variables in the vector
(3.2.23). Hence, the strong consistency of ixy follows from

(3.2.28). a

3.3 An Empirical Evaluation of
Certain Matching Strategies

Several distance-based matching strategles for creating
synthetic data have been discussed in Section 3.1. Specifically, two
strategles due to Kadane (1978) and a strategy which was proposed by
Sims (1978) were mentioned. In this sectlon, we shall evaluate these
three strategles, individually as well as in relative terms, ln the
speclal case where W = (X,Y,Z), the unobservable vector, has a tri-
varlate normal distribution. Before we dlscuss the Monte-Carlo Study
of the aforementioned strategles, we shall review some of the earlier
simulation studies of statistical matching prccedures, which have

certain bearing on our study. A more cnmprehensive review of evalua:
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tlons of statistical matching procedures can be found in Rodgers (1984).

Barr et al. (1982) used, among others, a statistical model 1in

PR ME o= N

which a vector W = (X.Y.Zl,zz) had a four-dimensional normal distri-

bution with zero means, unlt varlances and various levels of

-

covarlances among the four varlables. Altogether, these invest)- \

gators generated 100 palrs of independent files, namely File 1

Sl

D
i
£

comprising 200 observatlions on (X.Zl.z ' and Flle 2 conslsting of 200

2

observailons on Y, Z, and 2 for each of 12 populations, where the

1 2!

populations differed with respect to the covariances of the

variables. Then, for each such pair of files, six statistical &

matches were performed, namely three constrained matches and three

254

unconstrained matches. In each of these six matches, they used three

distance functions for each type of match. The first was a weighted

-,
A

sum of the absolute differences of the two Z varlables between

=

records of the two filles and the last two were the Mahalanobils -

distance and the "blas-avoiding" distance, which were discussed 1in

Section 3.1. A summary of the findings of Barr et al. is as follows.
All three distance measures provided accurate estimates of the

variance of the Y variable when the constralned matchlng procedure

B =

was used. They also found that all three unconstrained matching

procedures produced Y distributions that had means whlch were

. %5

significantly different from the corresponding population values.

The estimated covarlances of Y with 21.22. which were computed only

for constrained matches, tended to be underestimated. With respect

w A

to the most important question in the context of merging flles,

;,’.».“%}! R LA T TR A L
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namely the estimatlion of relationships between X and Y varlables, it
was reported that, if the condlitlonal independence assumption was
invalid, all statistical matching procedures provided estimates of
the X-Y covarlance that were extremely poor. On the other hand, for
the cases 1n which the conditional independence assumptlion was valid,

all six procedures provided estimates of the X-Y covariance that were

generally quite accurate. Thelr simulations also indicated that the
Mahalanobis distance measure produced less accurate matchlng than
subjectively welghted distance measures.

As we mentioned earlier, our own Monte-Carlo study was confined
to a trivariate normal model. However, our findings were suffi-
clently interesting to justify their inclusion in this thesis. 1In
fact, some new facts about Kadane's blas-avolding matching strategy
have already been mentioned in Section 3.1. Suppose, then, that
W = (X,Y,2) is tri-variate normal with Zero means and variance-

covarliance matrix

t Pxy Pxz
= 3.3.1
X Pxy 1 Pyz ( )
sz pyz 1

Assume further that the following data 1s available for the purpose

of estimating the three unknown correlations iln (3.3.1):
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File 1: (xl,zl). i=12, ..., n (3.3.2)
File 2: (YJ'ZJ)' J = n+l, ..., 2n (3.3.3)
In view of the discussions in Section 3.2, iIf the conditional
independence assumption X || Y | 2 or, equivalently,
pxy = pXZ pyz (3.3.4)

were true, then we can avold merging the files in (3.3.2) and (3.3.3)

because File 1 and Flie 2 can be used to get the sample correlatlons

Py and ;yz' which in turn provide the maximum likellhood estimator

of ny' namely

Pxy

-

= Prg ya (3.3.5)

We shall say X and Y are conditionally dependent, given z, iff

(3.3.4) does not hold; that ls

Pxy ¥ Pyz Pyz

For the sake of simplicity, we shall consider herelnafter only the

conditional positive dependence case of the model in (3.3.1), namely

P> p (3.3.6)

xy XZ pyz
The complementary case of conditional negatlve dependence. namely

<
Py < Pxz Pyz

can, however, be handled by methods similar to ours. We shall also

include the case when X || Y | 2 holds mainly for comparing and

wmE 25

Er B 53 I O o =N =3

X =R
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contrasting our results for the posltlve dependence case. Finally,
we shall evaluate matching strategles only from the point of view of
estlmating pxy, the correlation between variables which are not in
the same flle, because Flle 1 and File 2 can respectively be used to
estimate the remaining parameters Pyz and pyz.

It is clear that, i1f the condition X || Y | Z does not hold, then
we shculd not estimate pxy by means of (3.3.5). In such a case,
matching the files (3.3.2) ard (3.3.3) for estimation purposes 1s an

alternative that we shall study in this section. Thus, if after

merging, fFlle 1 becomes the synthetlic File 1 namely

(xi.Y;.Zl). 1=1,2, ..., n (3.3.7)

where Y; is the value of Y assigned to the 1th record in the process

of merging, then we shall use the synthetlc data (xl.Y{),

1 =12, ..., n to estimate pxy.
It was mentioned in Section 1.7 that performance characteris-

tics, which can help us assess the reliability of synthetlc data

generated by independent files in (3.3.2), are not known. Given this

paucity, our program for an empirical evaluation of matching strate-

gles 1s as follows

(1) Starting with a known corrrelatlon matrix given by (3.3.1),
generate data frow the normal population of W = (X,Y,Z) and
create independent files (3.3.2) and (3.3.3). Note that data
on (X,Y), which 15 typically missing in actual matching

situations, 1s avallable in simulation studies.
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(11) Using any given matching strategy, merge the two files created
in Step (1) and compute the "synthetlc correlation”, dcnoted
by ;s' which 1s defined to be the sample correlation coeffi-
clent based on the (X,Y") data glven by the synthetic file
(3.3.7)
{(1i1) Compare ;s of Step (11) with the following sample

correlatlons:

Pmea

unbroken data (xi'Yl)' 1 =1,2, ..., n which was genera-

(a) the sample correlation coefficient based on the

ted in Step (1). Observe that, if there is no aprilori

restriction on the model parameters in (3.3.1), then ;mll

is the maximum likelihood estimator of pxy'

the estimator of ny given by (3.3.9), which 1s

Pmy2*

also the maximum likelihood estimator of pxy when condi-

(b)

tional }ndependence holds.

Because ;mll and ;m are respectively based on one

L2

sample on (X,Y) and two independent samples on (X,Z) and

(Y,Z), we shall also refer to these as one- sample and two.

sample estimates of pxy.

Using the aforementioned program, we shall evaluate Kadane's
distance-based matching strategies discussed in Section 3.1, namely
the lsotonic matching strategy and the procedure induced by the

Mahalanobis distance, and the method of matching in bins, which, as

explained in Subsection 3.1.2, 1s an alaptation of a strategy due to

W,
=y

% = 4 [ e 4 [ o of RS
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Sims (1978). The synthetic correlations resulting from the use of
these three strategles will be denoted by Pg1' Pg2 and Pg3

respectively.

Our study has been conducted for three values of n, namely 10,
25 and 50. The values of the population correlation pxy which

are used, among others, to generate random deviates from the normal

population of W = (X,Y,Z), were chosen from the following categories:

Low pyy: 0.00, 0.25
Medlium Py’ 0.50, 0.60, 0.65, 0.70 (3.3.8)

High pxy: 0.75 (0.05) 0.95, 0.99

LW

Combined with low as well as high values of Pyz and pyz, there were
15 choices of pxy from (3.3.8) such that the conditional
independence restriction (3.3.%) was satlsfled. As remarked earlier,
these correlations were chosen mainly to provide a basis such that

the estimates of pxy resulting from the case of conditional

positive dependence can be compared with those resulting from

conditional independence. The fifteen values of pxy in the

conditional independence case were increased in such a way that the

positive dependence was achleved. Altogether, nineteen such }'s

T ]

| were selected.

23

For n=10, W was generated 1000 times by using the IMSL

&

subroutines. The calculation of ;Sl was based on sorting Z's in

-

! the two flles, as discussed in Section 3.1.1. Furthermore, Pgr was

computed for each realization by solving a linear asslgnment problem.

- o e
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The Ford-Fulkerson algorithm (Zlonts, 1974) was used for this
purpose. The computational cost for solving assignment problems grew
quite rapidly with n. Therefore, only 700 independent gsamples of
size n=25 were generated. A comprehensive examination of the results
for n=10,2%, revealed ;sl and ;32' the correlatlons corresponding
to Kadane's two distance measures, were, for all practical purposes,
identical (see Flgures 3.1 and 3.2). In view of this and the high
computational costs, we compared only two strategles, the isotonic
and the method of matching in bins for n=50 (2500 independent
samples).

Four summary statistics, namely the mean, the standard

deviation, the minimum and the maximum for the simulated data on

- - ~ -

Pmel’Pme2'Pal* P2’ Pg3 Were calculated for 34 }'s selected

for the study. However, we provide these statistics only for a

representatlve collection of 15 §'s in tables 3.1 to 3.7. For

each } and for any ;, the first entry in the tables is the mean,
the second entry (in parentheses) ls the standard deviation and the
third and the fourth entries are respectively the minimum and the
maximum. Also, the General Plotting Package at The Ohio State

University was used to plot the following palrs of estimates of Py

(1) Pgy VE- P2

(11) Pg1 VS Pga

-

(111) Pg1 Y3 Pran

S P T A LS B R L B G L R E AR AL A A LR RS GET L R
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V) pg, VB Pony

(vl) vs.

Ps2 Pmy2

I (V) p, V8. P,

- -

(vil) Pga vs. Pmt1

-

(vill) ;33 Ve. P 4o

Figures 3.1 to 3.20 provide an illustratlion of these comparisons.

3.3.1 cConclusions of the Monte Carlo Study

Tables 3.1 to 3.4 clearly show that the two estimates ;81 and

;sz' provided by the isotonic matchlng strategy and the Mahalanobis-

statistics., In fact, an examlnation of all the results showed that,
for all values of n and I in our study, the estimates ;’91 and ;52
were the same for most of the reallzations of W. Figures 3.1 and 3.2
provide the empirical svidence of this fact.

Now we shall discuss our results in the case of conditional

i distance based strategy, respectively have nearly identical summary
independence. As noted in Section 3.2, ;’mlz is the maximum likelihood

& estimator of pxy under this model, whersas ;mu‘ the method of

% moments estimator based on pailred-data, 1s computed for comparison

purposes. As expected, Pmil and Pmi2 behave aqually well on the

Ei average even though the estimated standard error of ;’mu is consls-

tently higher than that of ;’mtz' furthermore the ranges of Potl

L

|
TS TODa1 070 Mt B Y 1L oy 1 B B AL B L A S BT A, A 3.7 B ) B\ ), S AL A L A LAY A LA B L% L %, LA L 0 L LM 1A L L% L 1O LT e
sonintchivnblndmtboiiedindoosibelintiiindinstiotbeibivkieichria il s i okl aickinbcominas s et &

T AR WF T S o SR e 2Ty A TR W W ow w w o




138

« a eSS
| 2o

are consistently larger than those of ;mla (see Tables 3.1, 3.3 and

3.9).

FPor low correlation and each n, ;’1. ;a and ;s compare well

2 3

with the estlimates ;mll' or ;n as far as the averages are concerned

|
(sece Tables 3.1, 3.3 and 3.5). However, the synthetic data estimators

[ ~» | Eay™s

have larger varlation than ;mlz' as shown in Fig. 3.3 - Fig. 3.5.
Furthermore, all the aynthetlc data estimators have variatjon
comparable to that of Pmrl as shown in Fig. 3.6 - Filg. 3.8.

For medlum and high values of pxy, all three synthetic estima-

tors exhibit some amount of negative blas with regard to both ;mll

and ;m Also, p the estimator given by the method of matching

K2’
in bdbins, is more negatively blased than ;sl and ;s

83’
2 Tables 3.1, 3.3
and 3.5, Flg. 3.9 - Flg. 3.14 illustrate these points. Again, ;ss is

worse than Bs and ;S . These patterns among the five estimates

1

exist for any sample slze even though the difference between

2

synthetic data estimators and ;mlz tends to decrease as n increases.
Turning to the conditional positive dependence case, we first

note that ;mll

not be avallable to the practitioner. On comparling ;mll with the

synthetic data estimators ;sl' p

is a reasonable estimator of pxy, even though it would g
g2° and Pgs and Pmi2" we find

that these estimators perform very badly, in that all of them are g
conslstently underestimates and therefore heavily negatlvely bilased

(See Tables 3.2, 3.4, 3.6 and 3.7 and Fig. 3.1%). 8

For each n, and low or medium choices of Py’ the synthetic data

y ¢

A

estimators are comparable to P2 whereas for high values of pxy, i
b

.

-

I

?
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the three synthetic data estimators have a definite negative blas
compared with ;1“2. Tables 3.2, 3.4, 3.6 and 3.7 and Fig. 3.16 -

Fig. 3.19 support this conclusion. Furthermore it 1s observed that

Ps3
Filg. 3.20. However, the difference between the average ;mtz and

based on binning is worse than ; (; ) as illustrated by
sl s2

-~

Pgy+ 1 =1,2,3 tends to decrease as n increases.

Finally it must be pointed out that as the positive dependence

P increases, the blas in the three

increases; 19,pxy—pxz vz

synthetic data estimators and Pme2 increases. Tables 3.4 and 3.7

illustrate this fact.

Based on these observations, we must conclude that when

o0

[T

conditional independence model holds, the synthetic data estimators

-

do not provide any advantage over ;mlz' the no-matching estimator.
In fact, they are slightly worse than the ;m12' On the other hand,
in the case of conditional positlive dependence, ;mlz and all the

synthetic data estimators perform badly, the performance of

synthetic data estimators being slightly worse than that of ;mIZ'

Thus estimators based on matching strategies do not seem to provide

2757

any advantage over the estimators based on the assumption of

5
e

! conditional independence and no matching. Thus for estimating ny

] Ei in Case III models, the extra work involved 1n matching data flles y
h is almost worthless. Further studles are in order for much larger ;
ﬁ% sample sizes to examine 1f this plcture changes at all. We should !

point out that 1t is possible that matching may be useful for

==
ANl o

A

=%
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extracting some other features of the Joint distributlon and further

Monte Carlo studles are warrented to explore this.
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Table 3.1 Summary Statistics of Sample
Correlations - Files with nal0 Records
Conditional Independence Case

-
3

- -

xz Pyz Pxy Pmal Pmr2

D>

sl Pa2 83

0.0149 -0.0032 -0.0101 -0.0100 -0.,0l1l4
(0.3384) (0.1127) (0.3296) (0.3297) (0.3212)
0.00 0.10 0.00 ~0.8170 -0.%844 -0,7%7% -0.7%7% -0.8%06
0.8472 0.467% 0.8%90 0.,82%90 0.7708

0.°879 0.35794  0.%4%7  0.%4%7 0.%10%

(0,2212) (0.2006) (0.2337) (0.2337) (0.2396)
0.92 0.6% 0.60 -0.6%23 -0.4040 -0.60%8 -0.60%8 -0.60%8

0.97%3 0,9431 0.0626 0.9626 0,9681

0.6830 0.6638 0.61%0 0.61%1 0.%5748
(0.1986) (0.1728) (0.2087) (0.2086) (0.2230)
0.93 0.7% 0.70 ~-0,3369 0.1437 -0.311% -0.311% 0.3396
0.9936 0.9609 0.95%76 0.9376 0.9696

& R B e TR EE S 2

o . F
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Table 3.1 (Cont'd.)

~ - - - -

Xz vz xy Pl Pma2 Pa1 Pg2 Pa3

0.7863 0.7775 0.7302 0.7302 0.0874
(0.144%) (0.1182) (0.15%522) (0.15%22) (0.1731)
0.94 0.8% 0.80 -0,3432 0.20%8 -0.2367 -0.2367 -0.2367
0.9879 0.93%66 0.9799 0.9799 0.9723

0.8937 0.8901 0.82%2 0.82%1 0.7789
(0.0764) (0.062%) (0.0994) (0.0993) (0.1236)
0.9% 0.9% 0.90 0.3247 0.,3%08 0.3821 0.3821 0.1796
0.9949 0.0814 0.98%0 0.98%0 0.9725

0.9448 0.9421 0.87%8 0.8760 0.8238
(0.0419) (0.0317) (0.0741) (0.0741) (0.1063)
0.97 0.97 0.,9% 0.%329 0.7364 0.%027 0.%027 0.2123
0.9973 0.9910 0.9898 0.9898 0.9868
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Table 3.2 Summary Statlistics of Sample
Correlations - Flles wlth n=10 Records
Conditional Positive Dependence Case
Pxz  Pyz  Pxy Pme1 Pmr2 Ps1 Ps2 Pg3
0.9413 -0.0046 -0.0289 -0.0395% -0.0153
(0.0474) (0.1142) (0.3310) (0.3327) (0.3269)
0.00 0.10 0.9% 0.%942 -0.5723 -0.842% -0.8525% -0.8962
0.99%9 0.5302 0.8897 0.8897 0.R181
0.8676 0.5729 0.%276 0.5108 0.4919
(0.0885) (0.2021) (0.2403) (0.2443) (0.2483)
0.92 0.6% 0.88 0.2744 -0.%%10 -0.6166 -0.6248 -0.6119
0.9914 0.9407 0.9621 0.9621 0.9621
0.9103 0.6771 0.6310 0.6262 0.5834
(0.0666) (0.1617) (0.2018) (0.2050) (0.2085)
0.93 0.75 0.92 0.4811 -0.2063 -0.3%29 -0.3529 -0.2667
0.9918 0.9448 0.9722 0.9722 0.9892
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Table 3.2 (Cont'd.)

Pxz Pyz Pxy Pme1 Pma2 Pg1 Ps2 83
0.9558 0.7741 0.7188 0.7165 0.6687
{0.03%3) (0.1153) (0.1573) (0.1578) (0.1781)
0.94 0.85 0.96 0.6288 0.2202 -0.232% -0.232% -0.1806
0.9960 0.9798 0.9707 0.9707 0.9535
0.977% 0.8871 0.8225 0.8211 0.7770
(0.0177) (0.0640) (0.1036) (0.1040) (0.1231)
0.25 0.9% 0.98 0.8491 0.416% 0.2546 0.2546 0.0215
0.9986 0.9783 0.9922 0.992?2 0.9727
0.9888 0.9439 0.8770 0.8774 0.8258
(0.0088) (0.0329) (0.0760) (0.0755) (0.1039)
0.97 0.97 0.99 0.9184 0.6081 0.4432 0.4432 0.3541
0.9992 0.9919 0.9894 0.9894 0.9857

]
|
=
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Table 3.3 Summary Statistices of Sample
Correlations - Flles with n=25 Records
Conditional Independence Case

- - -

XZ yz Xy ’me1 Pme2 Ps1 Psz

b+ 20

83

~-0.0068 0.0001 .0025 -0.0026 -0.0040
(0.2059) (0.0479) (0.2013) (0.2014) (0.2008)
0.00 0.10 0.00 -0.6576 -0.2851 .574C -0.5749 -.0.6980
0.5450 0.2501 0.6196 0.6196 0.5087

}
(=

]
o

0.5915 0.5788 0.5%68 0.5%64 0.5171
(0.1336) (0.1231) (0.1365) (0.1365) (0.1476)
0.92 0.65 0.60 -0.0%76 -0.0890 0.0259 0.0259 -0.0468
0.8704 0.8189 0.8663 0.8663 0.8096

0.6859 0.6859 0.6620 0.6627 0.6111
(0.1087) (0.0935) (0.1096) (0.1097) (0.1216)
0.93 0.75 0.70 0.2953 0.2697 0.1828 0.1828 0.1642
0.9022 0.8959 0.8955 0.8955 0.8973
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o Table 3.3 (Cont'd.) "t
Pxz Pyz  Pxy Pma1 Pmr2 Ps1 Pg2 Pg3 g
SRR 0.7993  0.7934 0.76a4 0.7643  0.7129 i
(0.0758) (0.0617) (0.0789) (0.0790) (0.0964)
o 0.94 0.85 0.80  0.4274 0.4778 0.4617 0.4617 0.2724 Ea
' 0.9380 0.9087 0.9139 0.9139  0.9241
W g
R & 3
R 0.8967 0.8961 0.8648 0.8643  0.8049
<
(0.0416) (0.0313) (C.0473) (0.476) (0.0676) '
> 0.95 0.95 0.90  0.7057 0.7592 0.6580 0.6580 0.4614 II
g 0.9753  0.9636 0.9632 0.9632  0.9297
B8 i
B
0.9879  0.9473 0.9117 0.9123  0.8485
. (0.0211) (0.0154) (0.0327) (0.0326) (0.0605) l'
Jﬁ}, 0.97 0.97 0.95  0.8446 0.8638 0.7636 0.7636 0.5102
R )
Pty 0.9874 0.9755 O 35 0.9735 0.9519 Ea
Kl SR
1\;E;‘&
Lot
‘:“,,\ a
* H
E i
;‘;::'r
ag;
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Table 3.4 Summary Statistics of Sample
‘ Correlations - Flles with n=25% Records
i Conditional Positive Dependence Case
: Pz Fyz Pyy Pmr1 Pme2 Pg1 P2 Pa3
0.9475 -0.0019 0.0058 -0G.0372 -0.0004

(0.0222) (0.0439) (0.2061) (0.2038) (0.1989)
0.00 0.1C 0.95 0.8249 .2817 -0.5665% -0.5480 -0.7596
0.9857 0.1963 0.69¢4 0.6964 0.5557

.
&

1
<

-

0.8758 0.5857 0.5643 0.5149 0.5277
(0.0503) (0.1207) (0.1331) (G.1436) (0.1425)
0.92 0.6% 0.88 0.605%% 0.1442 u.1621 2.0617 0.0404
0.9738 0.8344 0.8896 0.8896 0.8512

0.9143 0.6907 0.6627 0.6489 G.56190
(0.0361) (0.0851) (0.10%8; (0.1063) (0.1125)
0.93 0.75 0.92 0.6844 0.2667 0.2949 0.2641 0.1829
0.9774 0.8876 0.8661 0.8642 0.9020

.

1,

P
by b=‘§' "

EYTRSREN  o-A eprsss tss €58 F (L. 1 (R B G0 RS G2 MFIE ST Y

it oAl e s &t acior




o
T

148

= E 2%

Table 3.4 (Cont'd.)

- "

yz Xy Pme1 Pmp2

gl Pe2 Paa

h -3

Xz

0.9%78 0.7931 00,7641 0.7%39 0.7127
{(0.0174) (0,0624) (0.0832) (0.085%3) (0.0948)
0.94 0.8% 0.96 0.87%6 0.%449 0.3612 0.3647 0.342%
0.9893 0.9226 0.9181 0.9174 0.9128

R R R o

0.9792 0.89%6 0.8614 0.8%43 0.7998
(0.0096) (0.0308) (0.0496) (0.0%16) (0,0691)
0.95 0.9% 0.98 0.9131 0.76493 0.631% 0.6226 0.%15%7
0.99%9 0.9661 0.9647 0.9647 0,.9413

0.989% 0.947% 0.9123 0.9139 0.8499
(0.0042) (0.0158) (0.0339) (0.0338) (0.0%84)
0.97 0.97 0.99 0.968% 0.8769 0.7182 0.73% 0.568%
0.9972 0.9833 0.9769 0.9849 0.9773

\,
)

w2

N3

4

-3
»
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Table 3.% Summary Statlstlcs of Sample
Correlations - Flles with n-=%0 Records
Condlitlonal Independence Case

Pxz Pyz Pxy Pmel Pmi2 Pgl P33

-0.0004 -0.0003 ~0.0019 -0.,0044
(0.1436) (0.0242) (0.1474) (0.1u4%)
0.00 0.10 0.00 ~0.4381 -0.1663 4872 -0.,9%20%
0.4746 0.1244 0.42398 Q.4574

£
(=)

(0.0916) (0.0794) (0.0909) (0.09%9)
0.92 0.6% 0.60 0.2%30 0.2219 0.2242 0.1098
0.8377 0.8103 0.7998 0.78712

1
0.9936 0.%9%2 0.%423 Q.%391 l
|
|
!

|

0.695%0 0.69%3 0.6807 0.6279 |

(0.07%6) (0.0612) (0.0709) (0.081%) |

0.93  0.7%  0.70 0.2796  0.3696  0.3760  0.2526
|
|
|

0.8768 0.8426 0.8718 0.85%43

A0, 8 M0 2 24 WA R S £, A A NS B0 D, AR Bt o L g ) Py LS LI L L
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B Table 3.5 (Cont'd.)
e - - - ~
Y Pxz Pyz  Pxy PMAL PmA2 Ps1 Pa3
Y
:ﬂé’i:.‘“
joe 0.79%9  0.7974  0.7797  0.71908
s (0.0328) (0.0408) (0.0%27) (0.0645)
LN
S 0.94 0.8% 0.80 0.%689 0.%664 0.4919 0.4%31
. e 0.9204  0.9082  0.9222  0.882)
] .."“sg
o
e 0.8982 0.8978 0.8778  0.8110
#etat
s (0.0289) (0.0200) (0.0306) (0.0493)
o 0.95 0.9%  0.90 0.7192  0.784%  0.7331  0.6079
L 0.9638  0V.9U67  0.9%9%  0.9149
3 dr“yve
l“;:';
o 0.9486  0.9490  0.9276  0.8359
I (0.01%1) (0.0103) (0.0199) (0.0419)
]
B 0.97  0.97  0.93  0.8%9  0.9100  0.8039  0.6529
o 0.9808  0.9743  0.9761  0.9576
U

; LAty 'y W o o

BEr &3 2 OB 55 M &5 B o9 B N B N 2 6E



151

Table 3.6 Summary Statistics of Sample
Correlations - Files with n=%0 Records
Conditional Positive Dependence Case

PX2 Pyz Pxy Pmil PmeL2 Prl Pg3

0.9491 0.0001 0.001% 0.0025%
(0.0148) (0.0245%) (0.1475) (0.1427)
0.00 0.10 0.9% 0.8700 -0.1447 -0.%2%6 -0.9157
0.98248 0.1%06 o.4727 0.5143

0.8776 0.%934 0.%809 0.%3%8
(0.0336) (0.0817) (0.0928) (0.0981)
0.92 0.6% 0.88 0.6908 0.2791 0.1%19 0.15%93
0.957¢6 0.8031 0.8181 0.8338

0.9183 0.69u4 0.6771 0.6257
(0.022%) (0.0638) (0.0752) (0.0834)
0.93 0.7% 0.92 0.8119 0.4028 0.3506 0.2950
0.9698 0.8628 0.8%99 0.8595

FARNIS s e | N ' o on

g ] g e
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) Table 3.6 (Cont'd.) gﬁ
N &
\\; - - - -

5 PXz Pyz Pxy Pmi1 PmL2 Psl Ps3

s
"
e

0.959% 0.7967 0.7803 0.7198
(0.0116) (0.0413%) (0.0512) (0.0627)
0.94 0.83% 0.96 0.8793 0.6023 0.%699 0.3595
0.9853 0.8960 0.9158 0.8824

B5==3 89

0.9794 0.8973 0.8776 0.8106

i
| i

B (0.0061) (0.0200) (0.0294) (0.0468)

o 3
¥ 0.95 0.95 0.98 0.9390  0.8096  0.75%96  0.6273 g
o] 0.9932  0.9506  0.9570  0.9279

,

3 &
! 0.9808  0.9492  0.9281  0.8555

(0.0029) (0.0107) (0.0200) (0.04826)
I 0.97 0.97 0.99 0.9736 0.8927 0.8181 0.6501
! 0.9964 0.9757 0.9713 0.9555
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Table 3.7 Summary Statistics of Sample
Correlations - Flles with n=2% Records
Conditional Positive Dependence Case

" - -

Xy Pme1 Pmy2 Ps1

e A K AU

h -3
h-TR1

b ¢4 yz s2 83

0.4933 0.0008 -0.0027 -0.0063 0.0012
(0.1574) (0.0451) (0.2117) (0.2105) (0.2044)
0.00 0.10 0.50 -0.0632 -0.1632 -0.6421 -0.6421 -0.0035
0.8777 0.1976 0.6186 -0.6186 0.5807

0.742%5 0.5876 0.5655 0.9622 0.5236
(0.0940) (0.1108) (0.1292) (0.1301) (0.1430)
0.92 0.6% 0.7% 0.2986 0.1141 -0.0065 -0.0065 0.0205
0.9390 0.8326 0.8621 -0.8621 0.8285

R APy

0.7943 0.6919 0.6683 0.6691 0.6249
(0.0762) (0.0889) (0.1109) (0.1102) (0.1180)
0.93 0.75 0.80 0.3982 0.3129 0.1844 0.1844 0.2023
0.9373 0.8978 0.9047 0.9047 0.8853
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